
ISSN-e: 2737-6419
Período: enero-marzo de 2026
Revista Athenea
Vol.7, Número 23, (pp. 18Ű27)
[4] M. Vera, C. Cruzat, and M. E. Vanegas, ŞLow-cost crop waste biosorbent technology for
removing toxics and pollutants from wastewater,Ť in Agricultural, Forestry and Bioindus-
try Biotechnology and Biodiscovery, aug 2020, pp. 177Ű216, doi: 10.1007/978-3-030-
51358-0_11.
[5] B. B. Vera Raza, R. A. Mero Intriago, G. A. Burgos Briones, and R. E. Cevallos Cedeño,
ŞLignocellulosic waste and activated carbon production method,Ť Minerva, vol. 1, no.
Special, pp. 122Ű130, dec 2022, doi: 10.47460/minerva.v1ispecial.87.
[6] J. Wang, S. Zhang, C. Wei, H. Hou, G. Song, L. Ca o, and J. Zhang, ŞHydrother-
mal carbonization of heavy metal-contaminated biomass: Migration, transformation, and
ecological stability changes of metals,Ť Int J Mol Sci, vol. 26, no. 6, p. 2551, mar 2025,
doi: 10.3390/IJMS26062551/S1.
[7] J. Coello-Cabezas, M. Verdezoto Carvajal M., N. Mejía cabezas, H. Sánchez-Moreno,
E. Basantes Basantes, M. Estrella Semblantes, I. Gavilanez alvares, and R. Ormaza Hugo,
ŞOrganic coagulant combined with magnetite nanoparticles for the treatment of mercury-
contaminated waters,Ť Case Studies in Chemical and Environmental Engineering, vol. 9,
p. 100579, jun 2024, doi: 10.1016/J.CSCEE.2023.100579.
[8] C. Li, C. Zhang, S. Zhong, J. Duan, M. Li, and Y. Shi, ŞThe removal of pollutants
from wastewater using magnetic biochar: A scientometric and visualization analysis,Ť
Molecules, vol. 28, no. 15, p. 5840, aug 2023, doi: 10.3390/MOLECULES28155840.
[9] R. Ormaza Hugo, J. Naranjo, I. Gavilanez Alvarez, V. M. Cando, K. Tixi Gallegos,
H. Sánchez-Moreno, F. Londo, O. D. Gavilanez, and J. Coello-Cabezas, ŞProduc-
tion of hydrochar by low-temperature hydrothermal carbonization of residual biomass
from cocoa production for mercury adsorption in acidic aqueous solutions,Ť Case Stud-
ies in Chemical and Environmental Engineering, vol. 10, p. 100938, dec 2024, doi:
10.1016/J.CSCEE.2024.100938.
[10] N. Meunier, J. Laroulandie, J. F. Blais, and R. D. Tyagi, ŞCocoa shells for heavy metal
removal from acidic solutions,Ť Bioresour Technol, vol. 90, no. 3, pp. 255Ű263, dec 2003,
doi: 10.1016/S0960-8524(03)00129-9.
[11] G. Cruz, M. Pirilä, and M. Huuhtanen, ŞPro duction of activated carbon from cocoa
(Theobroma cacao) po d husk,Ť Journal of Civil & Environmental Engineering, vol. 02,
no. 02, 2012, doi: 10.4172/2165-784X.1000109.
[12] C. Y. B. Abbey, A. B. Duwiejuah, and A. K. Quianoo, ŞRemoval of toxic metals from
aqueous phase using cacao pod husk biochar in the era of green chemistry,Ť Applied
Water Science, vol. 13, no. 2, p. 57, dec 2022, doi: 10.1007/S13201-022-01863-5.
[13] C. Nursiah, H. Desvita, E. Elviani, N. Farida, A. Muslim, C. M. Rosnelly, M. Mariana,
and S. Suhendrayatna, ŞAdsorbent characterization from cocoa shell pyrolysis (Theobroma
cacao L) and its application in mercury ion reduction,Ť Journal of Ecological Engineering,
vol. 24, no. 6, pp. 366Ű375, 2023, doi: 10.12911/22998993/163167.
[14] J. Correa-Abril, U. Stahl, E. V. Cabrera, Y. J. Parra, M. A. Vega, S. Taamalli, F. Louis, and
J. M. Rodríguez-Díaz, ŞAdsorption dynamics of Cd
2+
(aq) on microwave-synthetized pris-
tine biochar from cocoa pod husk: Green, experimental, and DFT approaches,Ť iScience,
vol. 27, no. 6, p. 109958, jun 2024, doi: 10.1016/J.ISCI.2024.109958.
[15] M. C. Fernández Pezua, ŞBiosorción de cromo hexavalente (Cr VI) de soluciones acuosas
utilizando pericarpio de cacao (Theobroma cacao),Ť MasterŠs thesis, Universidad Nacional
Ramos M. et al. Materiales carbonosos y nanomateriales de residuos de cacao para remoción de
metales pesados
26