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Abstract. This study demonstrates the superiority of the Discrete Wavelet Transform over the Wigner—
Ville Transform in detecting insulation faults in induction motors during startup transients. The com-
prehensive analysis of 360 simulated signals revealed that the wavelet technique with Daubechies 10
achieves significantly higher classification accuracy (74.44% vs. 67.78%), substantially outperforming
its counterpart. Certain decomposition levels showed maximum sensitivity with variations up to +354%,
while diagnostic reliability indicators confirm its robustness. This technique positions itself as an opti-
mal solution for predictive monitoring systems, enabling early fault detection that substantially reduces
downtime and industrial maintenance costs.

Keywords: wavelet transform, Wigner-Ville transform, induction motor, fault diagnosis, insulation
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Comparacion de la efectividad entre la Transformada Wavelet y la Transformada
de Wigner—Ville para el diagnostico de bajo aislamiento en el transitorio de
arranque de motores de induccién

Resumen. Este estudio demuestra la superioridad de la Transformada Wavelet Discreta frente a la
Transformada de Wigner—Ville en |a deteccién de fallas de aislamiento en motores de induccién durante
transitorios de arranque. El anélisis exhaustivo de 360 sefiales simuladas revelé que la técnica wavelet
con Daubechies 10 alcanza una precisién de clasificacién notablemente superior (74.44% vs. 67.78%),
superando significativamente a su contraparte. Ciertos niveles de descomposicién mostraron sensibilidad
maxima con variaciones de hasta +354%, mientras que los indicadores de confiabilidad diagnéstica
confirman su robustez. Esta técnica se posiciona como solucién éptima para sistemas de monitoreo
predictivo, permitiendo la deteccién temprana de fallas que reduce sustancialmente los tiempos de
inactividad y los costos de mantenimiento industrial.

Palabras clave: transformada wavelet, transformada de Wigner-Ville, motor de induccién, diagnéstico
de fallas, falla de aislamiento, procesamiento de sefiales.
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I. INTRODUCTION

Induction motors play a crucial role in the operation of industrial machinery, and their reliable
operation is vital for productivity and safety. Faults can lead to downtime, increased maintenance
costs, and loss of efficiency [1]. The industry has adopted motor fault detection as a means to ensure
the consistent and reliable operation of modern industrial systems. Motors are subjected to various
conditions and environments [2]. Stator-related problems account for 38% of all faults in induction
motors [3].

When an inter-turn insulation fault occurs, some turns in the stator winding short-circuit. Failure to
detect and rectify this fault promptly accelerates its progression to more severe faults, such as inter-coil
or inter-phase short circuits [4], culminating in phase-to-ground faults that can result in permanent
damage to the induction motor [5]. Recognized challenges include real-time monitoring and model
interpretability, emphasizing the need for practical solutions. The severe impact of motor failures on
productivity and safety underscores the urgency for early fault detection systems.

Over 40 years of research have demonstrated that many types of faults can be detected in motor
sensor data before they cause a breakdown; therefore, there has been significant interest in leveraging
this fact to reduce the losses caused by such failures [6]. More than 40 years of research confirm that
it is possible to detect these faults through the analysis of sensor data before a catastrophic failure
occurs, thereby reducing associated economic losses [7].

In this context, the startup transient emerges as a critical phase where thermal and magnetic stress
can reveal insulation weaknesses that are not visible under steady-state conditions. Time-frequency
analysis tools, such as the Discrete Wavelet Transform (DWT) and the Wigner—Ville Transform (WVD),
have emerged as promising alternatives. However, the need arises to determine which of these techniques
offers greater robustness in the face of the non-stationary nature of the startup.

To address this problem, the present research poses the following research questions:

1. Is the Discrete Wavelet Transform more effective than the Wigner—Ville Transform for discrimi-
nating incipient insulation fault levels during the startup transient?

2. Which statistical metrics derived from these transformations possess greater separability power
to characterize the motor’s condition?

To answer these questions, the following specific objectives are proposed:

1. Model and simulate the behavior of induction motors under healthy operating conditions and
with incipient insulation faults (200 kQ) and 20 kQ).

2. Extract a set of statistical features (energy, entropy, RMS, and kurtosis) from the representations
generated by the DWT and the WVD.

3. Evaluate and compare the performance of both techniques using a Support Vector Machine
(SVM) classifier and separability metrics such as the Fisher Score.

Finally, the success criterion for the comparative diagnosis is defined by obtaining a classification
model with an accuracy greater than 70%, an area under the curve (AUC) value greater than 0.80,
and the identification of at least three metrics with statistical significance (p < 0.1) that allow clear
differentiation between the analyzed classes.
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II. THEORETICAL BACKGROUND

A. Discrete Wavelet Transform (DWT)

The wavelet transform is a tool applied to analysis in the time and frequency domains. Ingrid
Daubechies, a leading figure in wavelet research, revolutionized the field by creating compactly supported
orthonormal wavelets, which enabled the development of discrete wavelet analysis. Members of this
family are identified by the nomenclature db/NV, where db corresponds to the researcher’s surname and
N indicates the order of the wavelet [8].

The analysis of the motor's transient current is performed in the time-scale domain using the Dis-
crete Wavelet Transform (DWT). The DWT is based on Multiresolution Analysis (MRA), decomposing
the signal z[n] into detail coefficients (D;) and approximation coefficients (A;) through a dyadic filter
bank according to Mallat's pioneering algorithm [9]. Formally, the coefficients at level j are obtained
through discrete convolution and downsampling operations, using a low-pass filter h[n] for the approx-
imation and a high-pass filter g[n] for the detail:

Aj[k] =" Aja[n] - h[2k —n] (1)
D;[k] =) Aj 1[n] - g[2k —n] (2)

where Ag[n] = z[n] is the input signal. The justification for the DWT lies in its ability to provide
a time-frequency representation of the signal, making it optimal for the analysis of transients and
non-stationary signals, which are characteristic of insulation faults in electrical machines.

For this study, the Daubechies wavelet of order 10 (dbl0) is selected, and a decomposition level
of 8 (J = 8). The dbl0 wavelet belongs to the family of orthogonal compactly supported wavelets.
The selection of N = 10 is supported by two fundamental properties. First, its compact support:
the filter support is finite (length 2N = 20 coefficients), which guarantees computational efficiency
and good temporal localization for the detection of impulsive events. Second, its vanishing moments
(N = 10): dbl0 has ten vanishing moments, meaning it is orthogonal to polynomials up to degree 9.
This property is crucial, as it ensures that the detail coefficients (D;) do not contain information about
smooth low-frequency variations (trend), but instead concentrate on the energy of irregularities, peaks,
or singularities in the signal [10].

The decomposition level J = 8 ensures adequate frequency resolution to isolate the bands where
the fault energy manifests. With f; = 5000 Hz, the decomposition generates 8 detail bands, where Dy
corresponds to the highest frequency range (12502500 Hz) and Dg represents the very low-frequency
band (9.77-19.53 Hz).

B. Wigner-Ville Transform (WVD)

The Wigner—Ville Transform is the principal member of the class of bilinear (or quadratic) time-
frequency distributions. Its main strength is providing optimal resolution simultaneously in the time
(t) and frequency (f) domains. The WVD is based on the notion of an instantaneous autocorrelation
function of the signal. For a signal s(t), the WVD is generally defined over its analytic signal z(t) to
avoid interference caused by negative frequency components [11].

o0

we.n)= [

z (t + g) z* (t - g) eI 47 (3)
— 00
where W, (¢, f) is the Wigner-Ville distribution, 7 is the integration variable representing the time inter-
val over which the instantaneous autocorrelation is calculated, and e 727/ is the complex exponential
factor that converts information from the delay domain (7) to the frequency domain (f), acting as a
band-pass filter for each instant ¢.

Marot A., y Veldzquez S. Comparison of the effectiveness between the Wavelet Transform and the
Wigner-Ville Transform...
30



[SSN-e: 2737-6419 Revista Athenea
Period: Jan-Mar of 2026 Vol.7, Issue 23, (pp. 28-40)

III. METHODOLOGY

This study tests the hypothesis that the Discrete Wavelet Transform (DWT) is more effective than
the Wigner—Ville Transform (WVD) for diagnosing stator insulation faults during motor startup. Using
numerical simulation, it ensures controlled conditions, safe replication of incipient faults, and generates
a labeled dataset for a systematic comparison of the two techniques.

A. Simulation of Motors and Fault Modeling

A simulation environment was implemented in MATLAB /Simulink to replicate the dynamic behavior
of 20 squirrel-cage induction motors with rated power distributed in the range of 10 to 4000 HP. This
selection ensures industrial representativeness by covering prototypical applications, including pumping,
ventilation, and compression systems predominant in manufacturing and continuous process sectors
(see Fig. 1).

Fig. 1. Squirrel cage motor simulation in Simulink. The figure was generated in MATLAB 2019.

The characteristics (rated power, voltage, resistances, and inductances) corresponding to 20 induc-
tion motors were parameterized, ensuring an accurate representation of the three-phase system across
various industrial power ranges. The insulation fault was simulated by connecting a resistive-capacitive
(RC) circuit between phase and ground of each winding [1]. The resistance of this circuit was adjusted
to 200 k) and 20 k() to represent incipient and critical faults, respectively. The phase-to-ground
capacitances were set between 1.5 nF and 21 nF [12].

B. Signal Acquisition and Structuring

A simulated cohort of 20 three-phase squirrel-cage induction motors with rated power from 10 to
4000 HP ensured industrial representativeness for applications such as pumping and ventilation. Data
generation followed a factorial design combining three insulation states (healthy, 200 kQ) fault, 20 kQ)
fault) and two load regimes (no-load, rated load) across each motor's three phases, yielding a total
of 360 three-phase signals (120 healthy, 240 faulty). Acquisition focused on the startup transient,
capturing a 5-second window at 5000 Hz to adequately resolve non-stationary components. All signals
were exported to MATLAB/Simulink, where time-frequency analysis algorithms were applied for the
systematic extraction of diagnostic descriptors.

C. Feature Extraction using DWT and WVD

The processing of the acquired signals employed two feature extraction approaches to transform
information from the time domain into a discriminative attribute space. A Daubechies 10 (db10)
wavelet with eight decomposition levels was applied, leveraging its compact support and ten vanishing
moments for precise transient detection and low-frequency trend filtering [9], [10]. The decomposition
level J = 8 was determined considering the sampling frequency (fs = 5000 Hz) and the spectral range
of interest for insulation faults (approximately 9.77-1250 Hz). From the detail coefficients obtained
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at each level D; (with j = 1,2,...,8) and for each of the three phases, five statistical metrics were
systematically calculated.

Energy:

E;

Ni 1D, k)]
_ S D "

i=1 Ei
where Dj[k]| is the k-th detail coefficient at level j and Nj is the number of coefficients at that level.
Maximum Value (MAX;) and Minimum Value (MIN; ):
MAX; = max(D;), MIN; = min(Dj) (5)

with units expressed in amperes (A).
Shannon Entropy:

. 1D, K]
Hj == pelogs(pr),  pr= —E (6)
k=1 J
Kurtosis: N A
1 3 >
~; 221 (Djk] = Dj)
Kj=— 4 (7)
O'Dj
where Dj and op; are the mean and standard deviation of D, respectively.
Root Mean Square (RMS):
RMS; = Amperes(A) (8)

with units expressed in amperes (A).

The Daubechies 10 wavelet transform was employed to characterize the impulsivity of insulation
faults. Concurrently, the Wigner-Ville Distribution (WVD), a quadratic time-frequency representation
offering optimal joint resolution, was applied [10]. Following the standard formulation to mitigate
cross-term interference, the WVD was computed on the analytic signal of each phase [10]. From the
resulting energy distribution, ten spectral attributes were extracted, including frequency moments and
power levels at the three most significant peaks [10].

From the processing via WVD, ten metrics per phase were systematically extracted and organized
into two fundamental categories. First, four central distribution statistics of the marginal spectral
density were calculated, including the mean frequency (f):

- 2 fiP(fi)
f = ; Hz 9
IR ©)
as the first spectral moment, and the spectral standard deviation (o), which quantifies spectral dis-
persion:

_ (XU PP .
”‘¢ ey a0

both expressed in hertz (Hz).

The analysis quantified the spectral envelope using bounding frequencies ( fmin, fmax), and the three
principal peaks characterized by their center frequency (fx) and normalized dB magnitude (pg). This
compact parameterization captures both global spectral extent and fault-indicative harmonic features
from the startup transient.

P(fpi)
Ap, = 10log;, (”k ; (db) (11)
o max (P(f))
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This normalization allows comparison between signals with different absolute energy.

D. Statistical Analysis and Attribute Selection

A two-stage pipeline was implemented for feature selection. First, univariate separability between
Healthy (S) and Fault (F) classes was assessed using the Fisher Score for each feature [13]. For a given
feature x, its Fisher Score Sy is calculated as:

(Ns - Mf)2
S¢(z) = ——— 12
@) =57 o2 (12)
where ps, f17 and ag, 0]20 are the means and variances of x for the Healthy and Fault classes, respectively.
A value of Sy close to zero indicates total overlap between class distributions, while higher values
indicate greater separability. An empirical threshold of St > 0.01 was established to consider a feature

as potentially discriminative, thus filtering out attributes with insignificant separation power.

In the second stage, one-way ANOVA (MATLAB's anoval function) was applied for each feature,
testing the null hypothesis of equal means among the three classes: Healthy, 200 k() Fault, and 20 k()
Fault. Given the exploratory nature of the study and the need to detect subtle effects associated with
incipient faults (200 kQ2), a significance level of @ = 0.1 was adopted, less strict than the conventional
a = 0.05 [14]. To control the increase in Type | error rate due to multiple comparisons, the Bonferroni
correction was applied. The original p-value obtained for each feature was adjusted according to:

Padjusted = min(p xXm, 1) (13)

where m is the total number of tested features. Only features with pagjustes < 0.1 were considered
statistically significant for discriminating between at least two of the analyzed operational states.

E. Supervised Classification using Support Vector Machines (SVM)

The automatic diagnosis phase was implemented using a Support Vector Machine (SVM). The
complete pipeline consisted of the following stages.

Preprocessing: All extracted features (both from DWT and WVD) were standardized using Z-score
normalization:

T —p

i=— (14)
where 1 and o represent the mean and standard deviation of each feature in the training set. This
ensures that all variables contribute equally to the model, regardless of their original scale [15]. Class
imbalance (120 healthy vs. 240 fault samples, 1:2 ratio) was addressed. The SVM with RBF kernel
performed acceptably without balancing techniques, thanks to the features' inherent separability, so the
original data distribution was preserved.

Feature Selection: To reduce dimensionality and avoid the curse of dimensionality, a filter based on
the Fisher Score was applied. Only features with a score Sy > 0.01 were retained, a threshold that
guarantees minimum significant separability between classes [16]. Principal Component Analysis (PCA)
was not used to preserve the direct physical interpretability of the wavelet and WVD metrics.

Validation Protocol: A 5-fold cross-validation strategy was implemented on the complete dataset. The
process did not include a fixed traditional training/test split; instead, each fold simultaneously served for
training and validation. The averages of accuracy, F1l-score, and AUC over the five folds are reported.

SVM Model Configuration: A Radial Basis Function (RBF) kernel with MATLAB's default parameters
was used, without additional hyperparameter optimization. The model was evaluated via 5-fold cross-
validation on the complete dataset.

F. Considerations on Validity and Scope of the Study

While numerical simulation provides controlled conditions for this proof-of-concept, the study's
external validity is limited by model idealizations. Key industrial factors such as electromagnetic noise,
dynamic loads, and environmental aging were not replicated. Therefore, while the results demonstrate
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the technical superiority of DWT over WVD, validation in real-world environments with actual noise
and variability is required for definitive implementation.

IV. RESULTS

Regarding the analysis of current signals using the Daubechies 10 Wavelet Transform with a de-
composition level of 8, a total of 360 signals were processed: 120 corresponding to the motor’s healthy
state and 240 associated with low insulation fault conditions. Table 1 details the technical specifications
of the analyzed motors, classified by their nominal voltage levels and power. The external validity of
this study is supported by a heterogeneous sample of 20 induction motors, covering a wide operational
spectrum from low-power (10 HP) to high-power (4000 HP) applications across different voltage levels
(Table 1).

Table 1. Technical specifications of the simulated induction motor population.

Voltage (V) | Frequency (Hz) | Specific Motor Powers (HP) Quantity
220 60 10, 20 2
480 60 100, 150, 175, 200, 215, 300, 355, 400, 500, 10
600
4160 60 175, 830, 900, 1000, 1250, 1630, 2000, 4000 8
Totals 20

Fault patterns thus reflect insulation degradation independent of motor design, enabling robust
SVM classification across operational variations. Although Fig. 2 and Fig. 3 reveals subtle energy
differences between states in a 200 HP motor, conclusive detection requires statistical aggregation
beyond individual signal inspection.
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Fig. 2. Energy spectrum obtained from the wavelet transform of a 200Hp motor. Healthy state.
The figure was generated in MATLAB 2019.
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Fig. 3. Energy spectrum obtained from the wavelet transform of a 200Hp motor. Faulted state,
unloaded, 200 KS). The figure was generated in MATLAB 2019.

A statistical analysis was performed in MATLAB to determine the average energy per condition from
the generated database, followed by the calculation of the percentage variation between scenarios. This
global comparison reveals overall trends in signal behavior. Fig. 4 illustrates this percentage variation,
highlighting energy changes due to faults. The most significant reductions in energy occur in levels
Dy (—17.1%), D2 (—20.2%), and notably D7 (—24.1%), marking them as sensitive indicators for
early anomaly detection. The pronounced effect on D7 suggests that its high-frequency components
are highly representative of insulation degradation. In contrast, level D5 shows a moderate increase
(+13.4%), potentially linked to fault-induced spectral redistribution. The remaining levels (D3, Dy,
Dg, Dg) exhibit smaller decreases or negligible variations, indicating their lower diagnostic relevance.

[0 smcamen

- -

Fig. 4. Percentage variation in the energy levels of the wavelet transform from the 360 sampled
signals. The figure was generated in MATLAB 2019.
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Figure 5 compares statistical indicators across wavelet decomposition levels, revealing that levels
Dy, Dg, and Dg exhibit the most significant variations, indicating high sensitivity to low-severity
insulation faults during motor startup. Specific changes include pronounced maxima perturbations in
D; (—19.2%), D¢ (+22.4%), and Dg (+49.8%) (Fig. 5a), notable minima shifts in Dy (—17.6%) and
Ds (4+41.5%) (Fig. 5b), moderate entropy variations in Dg (—8.1%) and D7 (+5.5%) (Fig. 5¢c), and
energy redistributions in D5 (+9.2% RMS) and D7 (—10.5% RMS) (Fig. 5d). These findings confirm
the wavelet transform’s efficacy for early fault detection.

41.5%

Fig. 5. Statistical indicators, per wavelet decomposition level; MAX (a); MIN (b); Entropy (c);
RMS (d). The figure was generated in MATLAB 2019.

The same dataset was analyzed using the Wigner-Ville Transform (WVD). Figure 6 contrasts a
healthy, unloaded 200 HP motor (top row) with its 200 kQ2 fault counterpart (bottom row) via time-
frequency distributions, marginal spectra, and instantaneous frequency profiles, clearly highlighting
spectral and dynamic differences attributable to insulation degradation.

For the analysis of the Wigner-Ville Transform (WVD), the percentage variation of six key spectral
metrics was calculated in MATLAB ( Figure 7), based on the database built from the obtained signal
records. The analyzed metrics were: mean frequency, standard deviation, minimum frequency, maximum
frequency, and the values of the two main peaks (Peakl and Peak2). This processing allowed for a
precise evaluation of the differences between operating conditions (healthy state, 200 k() low insulation
fault, and 20 kQ) fault), providing a detailed characterization of the spectral behavior under different
fault scenarios.
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Fig. 6. Spectral analysis using the Wigner-Ville Transform. The figure was generated in
MATLAB 2019.
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Fig. 7. Percentage variation of six spectral metrics from the Wigner-Ville Transform (WVD).
The figure was generated in MATLAB 2019.

Frequency sensitivity analysis via the Wigner—Ville Transform (WVD) applied to 360 records—evenly
distributed among healthy, low-severity (200 k(}), and severe (20 kQ) insulation fault conditions—
Mean sensitivity decreased markedly from 158.18 (healthy)
to 62.716 (200 kQ)) and further to —1008.5 (20 kQ}), indicating progressive spectral sensitivity loss.
Percentage variations were substantial: 771.31% between healthy and moderate fault, 164.18% between
healthy and severe fault, and 160.94% between fault severities. These results confirm the high sensitivity
of WVD to insulation degradation, particularly during startup transients, enabling clear discrimination

revealed pronounced metric variations.

even at incipient fault stages.

For a systematic comparison, two MATLAB routines were developed for statistical and supervised
processing of features from the WVD and Daubechies 10 wavelet transform. Each routine computed
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inter-class percentage variation, Fisher Score, ANOVA results (p-value and F-statistic), and the per-
formance of an SVM classifier evaluated through cross-validation (5 folds). Results are summarized in
Table 2, which synthesizes the discriminative capacity of each method.

The SVM model yielded the following performance (mean + standard deviation): Accuracy =
74.44 + 3.2%, Fl-score = 0.832 4 0.028, and AUC = 0.807 £ 0.032. Confidence intervals (95%) were
derived assuming normally distributed metrics. This comparative framework provides objective criteria
for selecting the most suitable spectral technique in motor insulation fault diagnosis.

Table 2. Final comparison between Wavelet Daubechies 10 and Wigner—Ville Transform

(WVD).

Criterion

Wavelet Daubechies 10

Wigner—Ville (WVD)

Spectral Sensitivity

High in multiple metrics (up to
+354%)

Low to moderate (max.
+9.48%)

Separability (Fisher Score)

Moderate to high (up to 0.0170)

Low (max. 0.0072)

Statistical Significance

Some metrics with p < 0.1 (e.g.,
Entropy Dsg)

No metrics with p < 0.1

SVM C(lassification Accu- | 74.44% 67.78%
racy
SVM Classification — F1- | 0.8322 0.7943
score
SVM Classification — AUC | 0.8072 0.6193

Multiscale Robustness

Yes (D1—Dg per metric)

No (global analysis)

Interpretability

High, by levels and specific met-

rics

Low, requires  time-

frequency expertise

Applicability in AT

Ideal for supervised classification

Limited by low discrimi-

nation

The obtained results demonstrate that the Daubechies 10 Wavelet transform offers greater spectral
sensitivity, better statistical separability, and superior performance in automatic classification compared
to the Wigner—Ville transform. The metrics extracted by the Wavelet transform, especially kurtosis,
entropy, and RMS at high levels (D4—Dsg), show significant percentage variations between classes
and Fisher Score values that exceed the useful discrimination threshold (> 0.01). Furthermore, the
SVM model trained with Wavelet features achieves an AUC of 0.8072, indicating a robust capacity to
distinguish between healthy and faulty states.

In contrast, the Wigner—Ville metrics show low sensitivity and scarce statistical significance, which
limits their direct applicability in automatic diagnostic systems. Therefore, it is concluded that the
Daubechies 10 Wavelet transform is more suitable for the diagnosis of insulation faults in electric motors,
both due to its multiscale segmentation capability and its compatibility with artificial intelligence models.

CONCLUSIONS

The study demonstrates that the Discrete Wavelet Transform (DWT) with Daubechies 10 consti-
tutes a significantly more effective tool than the Wigner—Ville Transform (WVD) for the early detection
of low insulation faults in induction motors during the starting transient. This superiority is confirmed
by the SVM classification results, where the DWT achieved 74.44% accuracy compared to 67.78%
obtained by the WVD, thereby validating the stated research hypothesis.

In terms of spectral sensitivity, the wavelet technique exhibited a notably superior discriminative ca-
pacity, with percentage variations of up to +354% in specific metrics, while the WVD showed maximum
variations of only +9.48%. Particularly, levels Dy, Dg, and Dg of the wavelet decomposition emerged
as the most sensitive indicators for detecting insulation anomalies, registering significant changes in
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maximum values (Dg: +49.8%) and energy (D7: —24.1%). The technique demonstrated effective-
ness across different fault severity levels (20 k() and 200 kQ}), broadening its applicability to various
operational scenarios.
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