
ISSN-e: 2737-6419
Period: Jan-Mar of 2026
Revista Athenea
Vol.7, Issue 23, (pp. 28Ű40)
maximum values (D
8
: +49.8%) and energy (D
7
: −24.1%). The technique demonstrated effective-
ness across different fault severity levels (20 kΩ and 200 kΩ), broadening its applicability to various
operational scenarios.
REFERENCES
[1] M. Samiullah, H. Ali, and A. A. S. Zahoor, ŞFault diagnosis on induction motor using
machine learning and signal processing,Ť in School Elect. Eng. Comput. Sci. (SEECS),
Nat. Univ. Sci. Technol., 2024, pp. 1Ű6.
[2] P. K. Sahoo and A. S. Hati, ŞReview on machine learning algorithm based fault detection
in induction motors,Ť Arch. Comput. Methods Eng., vol. 28, no. 3, pp. 1929Ű1940, 2020.
[3] K. N. Gyftakis and A. J. Marques Cardoso, ŞReliable detection of stator interturn faults
of very low severity level in induction motors,Ť IEEE Trans. Ind. Electron., vol. 68, no. 4,
pp. 3475Ű3484, apr 2021.
[4] R. M. Tallam, S. B. Lee, G. C. Stone, G. B. Kliman, T. G. Habetler, and J. Yoo, ŞA survey
of methods for detection of stator-related faults in induction machines,Ť IEEE Trans. Ind.
Appl., vol. 43, no. 4, pp. 920Ű933, jul 2007.
[5] S. Grubic, J. M. Aller, B. Lu, and T. G. Habetler, ŞA survey on testing and monitoring
methods for stator insulation systems of low-voltage induction machines focusing on turn
insulation problems,Ť IEEE Trans. Ind. Electron., vol. 55, no. 12, pp. 4127Ű4136, dec
2008.
[6] S. Sobhi, M. H. Reshadi, N. Zarift, A. Terheide, and S. Dick, ŞCondition monitoring and
fault detection in small induction motors using machine learning algorithms,Ť Information,
vol. 14, no. 6, p. 329, 2023.
[7] S. Sayedabbas, R. MohammadHossein, N. Zarift, A. Terheide, and S. Dick, ŞCondition
monitoring and fault detection in small induction motors using machine learning algo-
rithms,Ť Information, vol. 14, no. 6, p. 329, 2023.
[8] M. Misiti, Y. Misiti, G. Oppenheim, and J.-M. Poggi, Wavelet Toolbox™ UserŠs Guide.
Natick, MA, USA: MathWorks, 2021.
[9] I. Daubechies, Ten lectures on wavelets. Philadelphia, PA, USA: SIAM, 1992.
[10] Y. Y. Tang, Wavelet theory and its application to pattern recognition. Singapore: World
ScientiĄc, 2000.
[11] L. Cohen, Time-frequency analysis. Englewood Cliffs, NJ, USA: Prentice-Hall, 1995.
[12] P. Nussbaumer, M. A. Vogelsberger, and T. M. Wolbank, ŞInduction machine insulation
health state monitoring based on online switching transient exploitation,Ť IEEE Trans.
Ind. Electron., vol. 62, no. 3, pp. 1835Ű1845, mar 2015.
[13] I. Guyon and A. Elisseeff, ŞAn introduction to variable and feature selection,Ť J. Mach.
Learn. Res., vol. 3, pp. 1157Ű1182, mar 2003.
[14] T. E. Sterne and G. D. Smith, ŞSifting the evidenceŮwhatŠs wrong with signiĄcance
tests?Ť BMJ, vol. 322, no. 7280, pp. 226Ű231, jan 2001.
[15] J. Han, M. Kamber, and J. Pei, Data mining: Concepts and te chniques, 3rd ed. San
Francisco, CA, USA: Morgan Kaufmann, 2011.
Marot A., y Velázquez S. Comparison of the effectiveness between the Wavelet Transform and the
Wigner-Ville Transform...
39