I. INTRODUCTIONThependulumisaseverebodythatcanoscillatesuspendedfromapointbyathreadorrod.Thishasamass,so,inturn,itgeneratesaforcethatattractsittowardthegravitationalcenter.Thereareseveralvariationsofthesystem.Thesecanbeformedfromdifferentmaterials.However,theyareallgovernedbythesameprinciple,oscillatingandperformingincertaincircumstances,movementsconsideredperiodicorquasi-periodic[1].Inthissense,thependulumrepresentstheoscillatorymovementsofphysics.Thependulumdescribesacirculartrajectory.However,thearcitgenerateswillhavetheradiusofthelengthofthethread,beingthependulumatthemostsignificantangleatwhichtheweightwillbethrown;thishaspotentialenergy,whichwillbeconvertedintokineticenergyuntilreachingtheequilibriumpoint(whenithasanangleof90°withthehorizontal),Whenitbeginstorisetothegreaterangleitbecomespotentialagain.Oneofthemostvaluabletoolsforanalyzingthebehaviorofsimplependulumvariablesisdescriptivestatistics,whichcontributessignificantlytomostengineeringwork.Descriptivestatisticsisabranchusedtosummarizeandpresentdataclearlyandconcisely.Insimplependulum-basedwork,measurementsofpendulumswingtimescanbesummarizedbydescriptivestatisticsandpresentedastables,graphs,andstatisticsasmeanmedian,andstandarddeviation.Thisallowsforabetterunderstandingofthedataandamoreaccessibleinterpretationofexperimentalresults.Inthiswork,thebehaviorofgravityinthesimplependulumwasanalyzedwithstatisticalapplications.Forthis,anexperimentalpracticeofthependulumwascarriedouttotakethenecessarydatatoevaluatetheseverityvalueslaterandmaketherespectivecalculationsoferrorsandstatisticalanalysis.Tenlengthmeasurementsandthree-timevalueshavebeenconsideredforeachcasetooptimizecalculationprocedures.Thisworkconsistsof4sections;inthefirst,thefundamentalsofthesubjectofstudyhavebeendescribed;inthesecond,thetheoreticalelementsthatsupportthisresearchwillberaised;inthethirdsection,wewillproceedtoexplainthemethodologicalprocessesoftheexperiment.Finally,theresultsandconclusionsarepresented.II. DEVELOPMENT Ideally,asimplependulumhasamass(m)suspendedfromawireoflength(l),inextensibleandwithoutmass[1].Themassmovesthroughanangleθwiththeverticalaxis.Inourcase,thisangleshouldnotexceed15°,andtheoscillation,withoutimpartinganinitialspeed,isallowedtomoveonlyundertherestrictionsimposedbygravityandrope.16ISSN-E:2737-6419AtheneaJournal,Vol.4,Issue11,(pp.15-22)Fig. 1. Simple pendulum in balanced position.Almache E. et al. The pendulum of the hand of statistics and engineering Therefore,theparticle'smotionisconfinedwithinanarcofradius(θ)intheplane.Theonlyforcesactingonthismassaretheweight()andthestring'stension().17ISSN-E:2737-6419AtheneaJournal,Vol.4,Issue11,(pp.15-22)Fig. 2. Physical relationship of a simple moduleSomemovementsareconstantinphysicsandeverydaylife,suchastides,heartbeats,andclocks.Still,thislastisthemostthoughtforanalyzingasimplependulumbecauseitisthemostobviousexampleofperiodicmovement.Periodicmotionisthemovementofabodyfromonesidetotheotheralongafixedpath,returningtoeachpositionandvelocityafterafixedtimeinterval.Asimplependulumconsistsofaninsignificantmasssuspendedfromastring[2].Anyperiodicmotioncanbethoughtofastheresultofasetofsimultaneoussimpleharmonicoscillatorymovements.Forthisreason,simpleharmonicmotionisthebasisforstudyingallperiodicmotionand,therefore,allperiodicphenomena.Theactualperiodandfrequencyareobtainedincurrentpractice,andthependulumformulaobtainsthetheoreticalfrequency.whereT=period(s),l=lengthandg=gravitym/s.Forlaboratoryanalysis,singlependulumoscillatorsareidealizedasnaturalsystemswithlessthanfifteen-degreeangles.Duetotheirrelativevibrationrelativetoequilibrium,theygeneratemechanicalenergydissipatedintheformofkineticenergy.Basedonequilibriumcalculations,kineticenergyatitspeakisidealizedtoidentifyitsothermeasurements,suchasamplitude,frequency,period,rapidity,andquality[3].Gravityandoscillationaretwofundamentalpartsofthisstudy.However,itisknownthatgravityistheforcethatattractsobjectstotheearth'scenter.Whileoscillationisthemovementofanobjectbetweentwocertainpositions,theseoscillationscanvarydependingonthelengthofthethreadormaterialthatholdsitsuspended.Duetothis,itwasdecidedthatthebestwaytocheckeverythingdescribedabovewouldbetomakeamodelthatisfunctional,thatallowsandperformtheanalysisoftheoscillationandthechangethatexistsinitaccordingtothelengthofthethreadthathelpstokeepthedoughsuspended.Thismodelaimstoverifythatwhatisintheorycanbeputintopractice.Ontheotherhand,youwanttoimplementautomationtoitinawaythatfacilitatesthecollectionofdataandthenecessarycalculationwiththem.Almache E. et al. The pendulum of the hand of statistics and engineering A.DescriptivestatisticsinengineeringStatisticsisessentialtoengineering,providingasolidfoundationfordecision-makingandproblem-solving.Inexperimentdesign,statisticsisusedtoplan,design,andanalyzeexperimentstodeterminerelationshipsbetweenvariablesandtooptimizeprocesses.Forexample,engineersusestatisticaltechniquesinchemicalprocessengineeringtooptimizereactionconditionsandmaximizeprocessefficiency.Inaddition,inqualitycontrol,statisticsareusedtocontrolandimprovethequalityofproductsandprocessesthroughstatisticaltechniquessuchasprocesscontrolandprocesscapability.Thisallowsengineerstodetectandcorrectqualityissuesearly,reducingcostsandincreasingcustomersatisfaction.Inmaintenanceengineering,statisticsareusedtoplanandschedulepreventiveandpredictivemaintenanceofmachineryandequipment,helpingtoreducecostsandincreaseassetavailability.Inshort,statisticsisavaluabletoolforengineeringasitallowsengineerstocollect,analyze,andusedatatomakeinformeddecisionsandsolveproblemsinvariousfields.Themainerrorstoanalyzeinthispaperare:1.Absoluteerror:thedifferenceexistsbetweenthemeasurements'theoreticalandpracticalvaluesobtainedwhenmakingthemeasurements[1].2.Systematicerror:itvariespredictably;thismeansyouhaveanideaoftheerrorthatwillcomeout[2].3.Zeroerror:thiserrorisoneofthemostcommononaday-to-daybasis;manytimes,itisduetoafactoryerror;thishappenswhentheequipmentiszero;itmarksavaluethatitshouldnot.4.Non-linearityerrorhappenswhentheresultsdonotgenerateastraightlinebuthaveanonlineartrend[3].5.Standarddeviation:determinesthevariationbetweenthedataandthemean;whenitislow,thedataisconcentratednearthemean.Ahighdeviationindicatesthatthedataisdistributedoverabroaderrange[4].6.Variance:isanindicatorofhowuneventhedataarearoundthemean;thehighertheaverage,thegreaterthedispersionofthedataandthelessrepresentativethemean[7].III. METHODOLOGYFortheexperimentaldata,thedatacollectionwascarriedoutwiththepreparedmodelandabodyof7gramsofweightat15degreesofinclination.Themodelincludesadesigntobuildamodelinaphysicalorasimpleoscillatorypendulum.Ithasawoodenbasetokeepitstable,awoodenbar1m30cmhighwithacrossbaratthetiptoholdastringwithaweightattachedaspresentedinthefig.3.18ISSN-E:2737-6419AtheneaJournal,Vol.27,Núm.118,(pp.15-22)Almache E. et al. The pendulum of the hand of statistics and engineering 19ISSN-E:2737-6419AtheneaJournal,Vol.27,Núm.118,(pp.15-22)Fig. 2. Physical relationship of a simple moduleAftermakingthemodelaspresentedintheschematicdiagram,aweightof7gramswasincorporatedwithadiameterof3cmattachedtoastringofinitiallengthof10cm,whichisvariedfordifferentlengths,increasingfrom5cmto5cmaftereachmeasurement,inturn,todeterminethetimethependulumwaspositionedatanangleof15°,wheretheweightwillbereleasedtostartwiththetakingoftimeuntilacompleteoscillationends,tolatercontinuewiththeanalysisoftheaverageandobtainamoreaccuratemeasurement.Forthetheoreticaldata,dataweretakenfromasimulatorattheUniversityofColorado,wheretheweightofthebodywaspreparedas0.10kg;duetotheminimummasslimitationofthesystem,thesameinclinationwasadjustedandtakenataslowspeedforgreaterprecisionofthetimeinwhichthecycleiscompleted.Oncethedatawasobtained,itwasenteredintoanExceltable.Withtheexperimentaldatacollectedatthreedifferenttimes,anaverageofthethreevalueswasobtained(Table1)Table 1. Physical relationship of a simple moduleAlmache E. et al. The pendulum of the hand of statistics and engineering IV. RESULTSOncetheexperimentwasperformed,thefollowingresultswerefound:Regardingthecalculationoferrors,itcanbeseeninTable2.Thattheabsoluteerrorisverylittlebecausethemeasurestakendidnotsignificantlydifferfromonetotheother.Therefore,itisconsideredthatthevaluesarethemostaccuratepossible.Forabsoluteerrorcalculations,theformulaisimplemented:20ISSN-E:2737-6419AtheneaJournal,Vol.27,Núm.118,(pp.15-22)Theabsoluteerrorpresentedarangefrom0.0133sto0.0233s,representingthestudy.Ontheotherhand,thezeroerrorwas0.68s.Ontheotherhand,inTable2,youcanseethenonlinearityerrorsobtainedwhenevaluatingthevaluesintheformulasfoundandtheperiodandseveritycalculations;thesevalueshelptounderstandthesystem'sbehavior.Theabsoluteerrorpresentedarangefrom0.0133sto0.0233s,representingthestudy.Ontheotherhand,thezeroerrorwas0.68s.Ontheotherhand,inTable2,youcanseethenonlinearityerrorsobtainedwhenevaluatingthevaluesintheformulasfoundandtheperiodandseveritycalculations;thesevalueshelptounderstandthesystem'sbehavior.Table 2. Physical relationship of a simple moduleAlmache E. et al. The pendulum of the hand of statistics and engineering 21Forcalculatingthelines,equations(3)to(6)wereused,allowingtheuseofboththeoreticalandexperimentaldata.Forthecalculationofgravity,equations(5)and(6)havebeenconsidered,wherethelengthsandtimesoftheexperimentarerelated.Ascanbeseen,thegravitycalculationscloselyresemblethetheoreticalvalueof9.81.Forthecomparisonofthetheoreticalandpracticalvalues,figure4wasmade.Thetheoreticalandexperimentaldatashowapracticallyidenticalsimilaritybetweenboth.ISSN-E:2737-6419AtheneaJournal,Vol.27,Núm.118,(pp.15-22)Fig. 4. Length as a function of time, (a) theoretical valúes, (b) experimental values.Itwasobservedthatanalyticalgravityhasavalueveryclosetothetheoreticalvalueofgravity,whilegravityanalyzedgraphicallypresentsanaverageerrorof0.00011667tothetheoreticalvalueofgravity;thisreflectsthattheexperimentwasperformedconsistentlyandfairlyaccurately.However,itwouldbeprudenttorepeatthetestswithamoreconsistentmass,athreadwithlessresistance,andamoreaccuratestopwatchtoreduceerrorvaluesandimprovethequalityoftheprocessperformed.CONCLUSIONSThroughouttheresearchandtheimplementationofthetheory,itwasunderstoodthatinmanyopportunities,thetheoreticalresultisverysimilartothepracticalone.However,itmustbetakenintoaccountthatthesevaluesmaydifferif,whentakingthemeasurements,theforecastofhavingprecisioninthemneedstobetaken.Statisticsisagreattoolthatfacilitatescalculationsandallowsyoutopredicttheresultsobtainedthroughoutthestudies.Ontheotherhand,itisconfirmedthatstatisticsandengineeringcanshakehandswhenconductingstudies.Statisticsisagreatallywhendoingresearchbecauseithelpspredictresultsandknowiftheresultsbeingobtainedareadequate.Thepracticalformulationsintheunderstandingofconceptsofphysicsandstatisticsarebeneficialforteachingandlearninginengineeringcareerssincetheyallowinteractionwiththetheoreticalcontextanddeepentheconceptsachievingmoresignificantlearning..Almache E. et al. The pendulum of the hand of statistics and engineering 22ISSN-E:2737-6419AtheneaJournal,Vol.27,Núm.118,(pp.15-22)REFERENCES[1]C.Pillajo,P.BonillayR.Hicapié,«Algoritmogenéticoparasintonizacióndepidbasadoenlaintegraldelerrorabsoluto,»2016.[2]M.Hernández-Ávila,F.GarridoyE.Salazar-Martinez,«Sesgosenestudiosepidemiológicos.,»2000.[3]F.LópezyR.Zurita,«Intrumentacióndeprocesosindustriales,»UniversidaddeCarabobo,2016.[Enlínea].Available:https://instrumentacionuc.wixsite.com/facultad-ingenieria/tipos-de-errores.[Últimoacceso:27Enero2023].[4]C.Ortega,«Questionpro,»[Enlínea].Available:https://www.questionpro.com/blog/es/desviacion-estandar/.[Últimoacceso:26Enero2023].[5]V.Alonso,«Péndulosimple,»2018,p.1.[6]R.N.C.ChumoyD.A.C.Chumo,«ElaprendizajeactivodelaFísicadurantelaprácticadelPénduloSimplemedianteSimulación.,»2022,pp.79-80.[7]E.Reyes-Flores,«Obtencióndelperiodoyfrecuenciadeunpéndulosimpleadiferenteslongitudes.,»2022,p.1.[8]A.GonzaloGarcía,«Sage,»13Julio2021.[Enlínea].Available:https://www.sage.com/es-es/blog/varianza-que-es-y-como-se-calcula/.[Últimoacceso:26Enero2023].Almache E. et al. The pendulum of the hand of statistics and engineering