I. IntroduciónCleanerproductionisaformofindustrialproductionthatreducestheuseofnon-renewableresourcesandwasteandtheemissionofharmfulmaterialssuchasgreenhousegasesandchemicals.Thisisachievedbyadoptingcleantechnologies,improvingexistingproductionprocesses,introducingnew,cleaner,andmoreefficientproductionprocesses,andeliminatinghazardousmaterialsorprocesses[1].Itcanhelpsignificantlyreduceproductioncosts,improveproductquality,increaseproductivity,reduceenergyconsumptionandoperatingcosts,improveoccupationalsafetyandworkerhealth,andreduceairandwaterpollution.Thesebenefitscanbeparticularlyimportantforlocalbusinessesandsmallandmedium-sizedenterprises(SMEs)thatmayneedmoreresourcestoinvestincleanertechnologies[2].Cleanerproductionisbecomingapriorityformanycompaniesasithelpsthemimprovetheirreputationandcomplywithenvironmentalregulations.This,inturn,allowsthemtotakeadvantageofnewbusinessopportunities,suchasproducingproductswithgreenlabels,whichattractconsumersinterestedinenvironmentalprotection.Italsocontributestosustainableeconomicgrowthonceimprovedproductivityandreducedproductioncosts[3].This,inturn,generatesemployment,increasescompetitiveness,andimprovesthequalityoflifeofthepopulation.Inshort,cleanerproductionisaformofindustrialproductionbasedoncontinuousimprovementandreductionofpollution,energyefficiency,andtheuseofresourcestoachievesustainableindustrialproduction.SeveralcountriesarepromotingcleanerproductionthroughinitiativessuchastheKyotoProtocol,theStockholmConvention,andtheUnitedNationsEnvironmentProgramme[3],[4].Theseinitiativessetgoalsandstandardstoreducepollutionandimprovetheenergyefficiencyofindustrialproductiontoachievesustainabledevelopment.Inshort,cleanerproductionisanessentialtoolforsustainabilityandsustainableeconomicdevelopment.Thistechniquehelpscompaniesimprovetheirreputation,reduceproductioncosts,increaseproductivity,andcontributetosustainabledevelopment.Inaddition,governmentsalsopromotecleanerproductiontoachievesustainabledevelopmentglobally.Thispaperwilldescribetheelementsthatcharacterizethecleanerproductionprocessindigitizedindustriesandtheparticipationofartificialintelligenceintheformulationofnewsustainableproposals.Inthissense,thisworkaimstoshowthecontributionsofartificialintelligenceincleanerproductionprocessesinthenewbusinessandindustrialvision.Therefore,itconsistsoffourmainsections,theintroduction,wheretheessentialelementsofthestudyproblemhavebeendescribed.Asecondsection,wherethetheoreticalaspectsthatsupportthisresearchwillbedescribed,thenthemethodologyandtheresultsobtainedarereflectedtoexposetheconclusionsfinally.II. Industry 4.0 and its participation in environmental improvementsIndustry4.0focusesonincreasingefficiencyandproductivityusingdigitalandconnectedtechnologiestoimproveproductionprocesses.Thisisachievedbyconnectingproductionsystems,automatingprocesses,andcollectingandanalyzingdata[4].Thisalsoallowsproductiontobemoreflexibleandproductionchangesfaster.Inaddition,Industry4.0alsocaresabouttheenvironment.Thisisachievedbyreducingproductioncosts,whichreducestheenergyandresourcesneededtoproduceaproduct.Itisalsoachievedthroughusingrenewableenergytopowerproductionsystems.Thishelpsreducecarbonemissionsandothergreenhousegases,minimizingenvironmentalimpact[5],[4].Thus,Industry4.0isconcernedwithefficiency,productivity,andtheenvironment.Thismakesitanidealsolutionforcompanieslookingformoresustainableproduction.Inaddition,thistechnologyalsohelpstoimproveproductquality,whichcontributestohighercustomersatisfaction.24ISSN-E:2737-6419AtheneaJournal,Vol.4,Issue11,(pp.23-31)Suárez-Carreño et al. Smart models for cleaner production in Industry 4.0: A Scoping Review This,inturn,improvestheimageofthecompanyanditsfinancialresults.Insummary,Industry4.0isasolutionthatbringsbenefitsbothintermsofproductivityandsustainability.Thismakesitanidealsolutionforanycompanylookingtoimproveproduction[6],[7].Inaddition,thistechnologyalsohelpstoimprovethequalityoftheproduct,whichcontributestogreatercustomersatisfactionandimprovestheimageofthecompanyanditsfinancialresults.Forthesereasons,Industry4.0isanidealsolutionforanycompanylookingtoimproveitsproduction.Inconclusion,Industry4.0offersanidealsolutionforcompanieslookingtoimprovetheirproductsandcareabouttheenvironment[6],[8].Thistechnologyoffersbenefitsintermsofproductivityandsustainability,aswellascontributingtoimprovingproductquality,customersatisfaction,andthecompany'sfinancialresults.Forthisreason,Industry4.0isanidealsolutionforallthosecompaniesthatwanttoimprovetheirproductsresponsibly.A.Industry4.0andcleanerproductionIndustry4.0isanewindustrialrevolutionthatcombinesinformationandcommunicationtechnologies(ICT)andautomationtoimproveproductivity,efficiency,andquality[9].Thisisachievedbyoptimizingproductionprocesses,reducingerrors,improvingcustomerservice,andreducingcosts.Thisindustrialrevolutionalsoallowstheproductionofhigher-qualityproductswithfewerresources.CleanerproductionisaconceptrelatedtoIndustry4.0.Itisasystemicapproachtoindustrialproductionthatimprovesproductivityandefficiencybyreducingwaste,risks,andenvironmentalcosts[5],[10].Thisinvolvesadesignapproachfocusingonreducingpollutionandenergyuse,improvingproductionprocesses,andusingmoreefficientmaterialstoreduceenvironmentalimpact.Thiscontributestothesustainabilityofindustrialproduction[11].Finally,Industry4.0andcleanerproductionaredirectlyrelated.Industry4.0enablesgreaterefficiencyandproductivitybyautomatingproductionprocesses,whilecleanerproductionfocusesonreducingwaste,risks,andenvironmentalcosts[12].Thiscontributestothesustainabilityofindustrialproduction.Theseconceptspromoteindustrialinnovationandproducehigher-qualityproductswithfewerresources[13].Thishelpstoimprovethecompetitivenessofcompanies,reducecostsandimprovetheefficiencyofproductionprocesses.B.ArtificialintelligenceintheindustryArtificialintelligenceisprojectedtoplayanessentialroleincleanerproductionthroughprocessautomationandresourceoptimization.Forexample,AIisexpectedtohelpreduceenergyconsumptionandcarbonemissionsbyoptimizingenergyefficiencyinfactoriesandimplementinggreentechnologies[14].AIisalsoexpectedtohelpimprovewastemanagementandmaterialrecovery.Inaddition,AIisexpectedtoassisttheindustryindecision-makingandsustainableplanning.Artificialintelligence[15]playsanessentialroleingeneratingeco-sustainablematerials,asitcanhelpidentifynewwaystoproducematerialswithlessenvironmentalimpact.SomeexamplesofhowAIisusedinthegenerationofeco-sustainablematerialsinclude:Materialdesign:AIcanhelpdesignnewmaterialswithspecificproperties,suchashigherstrengthorlowerenvironmentalimpact[16].Productionprocesses:AIcanhelpoptimizeproductionprocessestoreduceenergyconsumptionandwaste[2].Recycling:AIcanhelpimprovematerialrecyclingbyautomatedmaterialidentificationandoptimizationofseparationprocesses[15].25ISSN-E:2737-6419AtheneaJournal,Vol.4,Issue11,(pp.23-31)Suárez-Carreño et al. Smart models for cleaner production in Industry 4.0: A Scoping Review AIisexpectedtocreateacirculareconomywherewasteisturnedintovaluableresourcesthroughadvancedtechnologies[17].AcirculareconomyprocesswithAIcouldincludethefollowingstages:Wastecollectionandsorting:AIcouldusemachinelearningandimageprocessingtechnologiestoautomaticallysortwasteandseparateitbytype.Thiscouldhelpreducethetimeandcostsassociatedwithmanualsorting[14].Optimizationofrecyclingprocesses:AIcouldusealgorithmstooptimizerecyclingprocessesandmaximizetherecoveryofvaluablematerials[18].Forexample,youcouldusemachinelearningtechniquestopredictthebestmethodforeachtypeofwasteandadjusttheprocessingparametersaccordingly.Materialdesign:AIcouldusemachinelearningtechniquestodesignnewmaterialsfromrecycledwaste[11].Thiscouldhelpreducedependenceonnaturalresourcesandcreatenewsustainableproductsandsolutions.Demandprediction:AIcouldusemachinelearningtechniquestopredictfuturedemandforproductsandmaterials,helpingtheindustryplanproductionandresourceusemoreefficiently.Monitoringandevaluation:AIcouldusedataanalysistechniquestomonitorandevaluatetheperformanceofcirculareconomyprocessesanddetermineareasforcontinuousimprovement.Overall,theuseofAIinthecirculareconomycouldhelpimproveefficiencyandsustainabilityatallstagesoftheproductlifecycle,fromproductiontorecyclingandthedesignofnewmaterials[15],[17],[14],[19].III. MethodologyInthiswork,anon-in-depthliteraturereviewwascarriedouttoknowwhatcontributionsartificialintelligenceofferstothebestenvironmentwithinindustry4.0toinitiatenewresearch.Scientificarticlesfromprimarysourceswereevaluated,showinginterestinformulatingnewproposalsthathelpthebestclimateinthedigitalsector.Figure1presentsthecharacteristicsofthereferencesmade,takingintoaccountthesourcesandthecontributionstheyoffer.Theresearchcarriedoutissimplified,withthefundamentalpurposeofevaluatingtheconceptualknowledge,theories,orcharacteristicelementsofartificialintelligenceasatoolforthegenerationofsustainableenvironmentalproposalsinindustry4.0.Tothisend,themethodologyproposedbyKirtchenhamandOkoli,andSchabramondeskreview,whichinpracticeissimilartothePRISMA[11](PreferredReportingItemsforSystematicreviewsandMeta-Anayses)reviewmodel,wasconsidered.Theproposedmethodconsistsofthreephases:planning,development,andreportingofthesystematicreview,whicharecarriedoutfollowingeightstepsforitsexecution:determinethepurposeoftheevaluation;definetheprotocolandtraining;Performliteraturesearch;screeningforinclusion;qualityassessment;dataextraction;studysynthesisandreviewwriting.26ISSN-E:2737-6419AtheneaJournal,Vol.27,Núm.118,(pp.23-31)Suárez-Carreño et al. Smart models for cleaner production in Industry 4.0: A Scoping Review 27ISSN-E:2737-6419AtheneaJournal,Vol.27,Núm.118,(pp.23-31)Fig. 1. Methodology proposed by Kirtchenham and Okoli and Schabram [11]SmartANDmodelsANDforANDcleanerANDproductionANDinANDindustry4.0(6documents).ArtificialANDintelligenceANDinANDenvironmentalANDproposals(153documents).SmartANDmodelsANDenvironment(190documents).Phase1:Inthisphase,theresearchquestionshavebeendefined,consideringtherelevanceandtimelinessofthetopicofstudy,inthissensethequestionsposedare:Q1:HowdoesartificialintelligenceparticipateincleanerproductionprocessesinIndustry4?0?Q2:HowdosmartmodelslookinenvironmentalproposalsforIndustry4.0?Q3:Whatvariableshavebeenconsideredinthenewproposalsforintelligentmodelsforcleanproduction?Thesearchprocessconsistsofconductingresearchofscientificdocumentsthatallowfindingstudiesrelatedtothesubjectofstudy,specificallyintheenvironmentalareaforindustry4.0andthecontributionsofartificialintelligenceinthisregard.Inaddition,thesearchislimitedtothemostrecentyears,from2020to2023,asitisacurrenttopic,itisintendedtoanalyzethenewproposalsforintelligentmodelsforcleanerproductioninthedigitizedindustry.TheScopusdatabaseandthepublicationsoftheElsevierpublishinghousethatwereopenaccesswereused.Afirstsearchchainwasdefinedbasedonthetitleandcentralfieldofthesubjectstudied,withtheseelementsthesearchchainisredefinedconsideringthetitlesfound,thekeywords,thereferencedstudies,tofinallyachievethefollowingsearchchains:InTable1,thefirstresultsfoundindifferentScopusjournalsaresampled,onlyintheyear2023.Suárez-Carreño et al. Smart models for cleaner production in Industry 4.0: A Scoping Review 28ISSN-E:2737-6419AtheneaJournal,Vol.27,Núm.118,(pp.23-31)Themanuscriptsanalyzedwereclassifiedaccordingtotheyearofpublication,inadditiontothejournalwhereitwaspublished,thecorrespondingdatabase,thenumberofcitations,themethodologyused,whereexperimentalresearch,industrialcasestudies,andbibliographicreviewshadpriority.Theprimaryresearchwasobtainedthroughachainofqueriesfromtheresearchquestions.Toknowthefindingsofthearticlesandthequalityofthetopics,fourcriteriawereapplied:population,intervention,comparison,andoutcome(PICO).Inthissense,thepopulationreferstopublishedstudies.Theinterventionisrelatedtoartificialintelligenceandcleanerproductioninthenewproposalsofindustry4.0.Thecomparisonreferstocarefullyselectedstudieswithartificialintelligenceinenvironmentalproposalsandthetypeofresearch.TheresultincludespublishedstudiesonartificialintelligenceinnewenvironmentaldevelopmentsanditsparticipationinIndustry4.0;basedonPICO,fivenewquestionswereaskedtoensurethequalityoftheextractedarticles,asshowninTable2.Table 1. Length as a function of time, (a) theoretical valúes, (b) experimental values.Table 2. Evaluation of the quality of the documents analyzed.Suárez-Carreño et al. Smart models for cleaner production in Industry 4.0: A Scoping Review 29Theinclusionandexclusioncriteriaaimtofindsignificantprimarydocumentstoanswertheresearchquestionsposed.TheagreementbetweentheevaluatorswasresolvedbyapplyingCohen'sKappacoefficient=0.5withapercentageofagreementof87.1%,whichimpliesamoderateagreementamongtheevaluators.Theinclusioncriteriawerethatthepreliminaryresearchisassociatedwithpublicationsinjournalsonthecontributionsofartificialintelligenceinthenewenvironmentalproposalsforindustry4.0,thattheyearofpublicationisrecent,between2019and2022,thatthedocumentispresentedinahigh-impactjournal,preferablyinEnglish.Whiletheexclusioncriteriawerethepreliminarystudyislimited,literaturereviewarticlesandsimilararticlesfromdifferentsources.IV.ResultsThedocumentsanalyzedtoshowthatartificialintelligenceoffersanessentialcontributiontothegenerationofnewenvironmentalproposalsforindustry4.0.Inthissense,thereviewshowedthatmanyinvestigationsarebeingcarriedoutaroundtheopportunitiesofferedbyartificialintelligenceinenvironmentalapplications.Itwasmainlyfoundthattheproposalsareframedinprocessandqualitymanagement,notingthatmanychallengesfornewmaterialsandengineeringdevelopmentshaveyettobesubstantiallydefined,justasnoproposalsforsoftwaredevelopmentswithartificialintelligencethatcontributetonewresearch.Theresearchisonlyanoutlinetoopenfutureworksincethedevelopmentofnewmaterialsthatcouldbedesignedusingartificialintelligencewillhavetobeconsidered.Someexamplesmightinclude:Bioplastics:AIcouldhelpdesignbioplasticsfromorganicwaste,suchasagriculturalorfoodwaste.Thesebioplasticscouldbeusedinvariousapplications,suchaspackagingandsingle-useproducts.Thatthestudyofthefollowingmaterialscanalsobeincludedwithinthecategoryofbioplastics:Polyathidepolyester(PLA):Thisbioplasticisproducedfromorganicsubstratessuchassugarcaneorbeetsandisoneofthemostcommonbioplastics.Itisbiodegradableandusedinvariousapplications,includingpackagingandsingle-useproducts.Aliphaticpolyester(PBAT):Thisbioplasticisproducedfromamixtureofpolylacticacidandaliphaticpolyesterpolyesters.Itisbiodegradableandismainlyusedinpackagingapplications.Polyactidicacid(PHA)polyester:Thisbioplasticisbiodegradablefrommicroorganismsmetabolizingcarbohydrates.Itisusedinvariousapplications,includingpackaging,single-useproducts,andtoys.Cellulosepolyester(Cellulose):Thisbioplasticisbiodegradablefromwoodpulporplantcellulose.Itisusedinstationeryandpackagingapplications.Starch-based:Thisbioplasticisbiodegradablefromcerealortuberstarch.Itisusedinvariousapplications,includingpackaging,single-useproducts,andtoys.Compositematerials:AIcouldhelpdesignnewcompositematerialsfromrecycledandnaturalwaste.Thesematerialscouldhaveimprovedproperties,suchasincreasedstrengthandlowerenvironmentalimpact.Buildingmaterials:AIcouldhelpdesignnewbuildingmaterialsfromrecycledwaste,suchasglass,plastic,andmetal.Thesematerialscouldbeusedinvariousapplications,suchasceilingsandflooring.Hybridmaterials:AIcouldhelpdesignnewhybridmaterialsthatcombinethepropertiesofdifferentexistingmaterials,improvingtheircharacteristicsandperformance.Superconductingmaterials:AIcouldhelpdesignnewsuperconductingmaterialswithimprovedcharacteristics,suchasincreasedenergyefficiencyandtransmissioncapacity.ISSN-E:2737-6419AtheneaJournal,Vol.27,Núm.118,(pp.23-31).Suárez-Carreño et al. Smart models for cleaner production in Industry 4.0: A Scoping Review 30ISSN-E:2737-6419AtheneaJournal,Vol.27,Núm.118,(pp.23-31)Overall,usingAItodesignnewmaterialscouldhelpcreatemoresustainableandefficientsolutions,reducingenvironmentalimpactandincreasingtheefficiencyofproductionprocesses.Theanswerstotheresearchquestionsresolvedfromtheanalysistothestudiescollectedintheliteraturereviewarepresentedbelow.Q1HowdoesartificialintelligenceparticipateincleanerproductionprocessesinIndustry4.0?Thedocumentsanalyzedshowthatthemostsignificantparticipationisbeingpresentedinthemanagementofprocessesandproducts,improvementsinwastetreatment,andprocessmanagementthatoptimizeproductivity.Q2:HowdointelligentmodelslookinenvironmentalproposalsforIndustry4.0?Thedocumentsanalyzedshowthatintelligentmodelshavealongwaytogo,andtheirdevelopmentandparticipationinIndustry4.0asanalternativeforcleanerproductionisstillincipient.Q3:Whatvariableshavebeenconsideredinthenewproposalsforintelligentmodelsforcleanproduction?Thereviewshowedthatthemainvariablesanalyzedareoccupationalhealthandsafetyandthehuman-machinerelationshipforproductionimprovement.Ahighpercentageoftheworksanalyzed(64%)showsthatprocessmanagementforimprovementsinproduction,occupationalsafety,andhealthwithinenvironmentalcontextsarethemoststudiedaspectsconcerningcleanerproductioninindustry4.0.Itisessentialtocontinuewithextensivestudiesonartificialintelligenceanditscontributiontoenvironmentalimprovements.Henceitisalsonecessarytoincludeengineeringdevelopmentsthatdirectlyinfluenceproductsandservicesforcleanerproduction.ConclusionsThereviewisfundamentalandneedstoincludeanin-depthanalysisoftheselectedarticles.However,itallowedtheyieldingofrelevantresultsthatcharacterizethecontributionsofcleanerproductioninindustry4.0.Theanalyzeddocumentsrevealamoresignificanttrendofstudiesthatfocusonmanagingenvironmentalprocesses,wastetreatment,andproductionmanagementusingintelligenttoolsratherthandevelopingengineeringproposalsthataffectthecompositionofmaterialsandpromoteothertreatmentalternatives.ThelimitationsofthisworklieinthefactthatonlycontributionsinEnglishandopenaccesswereanalyzed,rulingoutpossiblecontributionsfromothercountries,whichcouldincludethedevelopmentofintelligentsoftwarethatoffersnewmaterialsandwastereductionmodels.References[1]Y.Aleman,P.Alarcon,G.Monzon,andK.Pastor.,«EducationprioritiesinthewakeoftheCOVID-19Pandemic,»MinervaJournal,vol.2,nº5,pp.5-12,2021.[2]C.A.Ávila-SamaniegoandM.F.Granda-Juca,«AdopcióndeTicsysusEfectossobrelosProcesosenlasPymes.UnaRevisiondeLiteratura,»RevistaPolodelConocimiento,pp.1287-1303,2022.[3]BancoMundial,«BancoMundial,»17agosto2022.[Enlínea].Available:https://www.bancomundial.org/es/home.[4]M.DiniandG.Stumpo,MipymesenAméricaLatina:unfrágildesempeñoynuevosdesafíosparalaspolíticasdefomento,SantiagodeChile:CEPAL,2021.[5]J.González-Mendoza,J.Sánchez-MolinaandM.Cárdenas-García,«Pensamientoestratégicoyrestructuraciónindustrial.,»DesarrolloGerencial,pp.1-20,2022.[6]O.Flor,H.Tillerías,B.Mejía,C.Proaño,M.Rodriguez,F.SuarezandC.Chimbo,«ImpactofIndustrialAutomationinEmployability,»IEEEXplore,pp.157-162,2022.[7]V.Tripathi,S.Chattopadhyaya,A.MukhopadhyayandS.Sharma,«ASustainableMethodologyUsingLeanandSmartManufacturingfortheCleanerProductionofShopFloorManagementinIndustry4.0,»Mathematics,vol.10,nº347,2022.[8]A.Garzón-Posada,M.Jiménez-RamírezandL.Gómez-Campos,«Redesdecolaboraciónempresarialparapymes,»RevistaFacultaddeCIenciasEconómicas,2022.Suárez-Carreño et al. Smart models for cleaner production in Industry 4.0: A Scoping Review 31ISSN-E:2737-6419AtheneaJournal,Vol.27,Núm.118,(pp.23-31)[9]J.Lemos,P.Gaspar,andT.Lima,«EnvironmentalRiskAssessmentandManagementinIndustry,»Machines,vol.10,nº702,p.103390,2022.[10]J.Ramírez,V.López,S.HernándezandM.Morejón,«LEANSIXSIGMAEINDUSTRIA4.0,UNAREVISIÓNDESDELAADMINISTRACIÓNDEOPERACIONESPARALAMEJORACONTINUADELASORGANIZACIONES,»UNESUMCiencias,pp.151-168,2021.[11]G.Tebes,D.Peppino,P.BeckeryL.Olsina,«EspecificacióndelModelodeProcesoparaunaRevisiónSistemáticadeLiteratura.SpecifyingtheProcessModelforaSystematicLiteratureReview,»UniversidadNacionaldelaPampa,LaPampa,2019.[12]M.Ramirez,F.SuárezyE.Ascencio,«Enseñanzadediseñodeprocesosparalaindustria4.0,»Rev.Univer.Cienc.Tecnologia,pp.129-136,2021.[13]D.Mendoza,Y.RojanoyE.Salas,«ElpensamientoestratégicocomoherramientadeinnovacióntecnológicaenlasPYMES,»SotaventoMBA,pp.50-65,2018.[14]J.Mora,«LaEvolucióndelaInteligenciaArtificial,»2016.[Online].Available:https://mundocontact.com/la-evolucion-de-la-inteligencia-artificial/.[15]B.MartíndelBrío,«RedesNeuronalesySistemasBorrosos,»EdsRa-Ma,pp.43-47,2001.[16]A.Álvarez,G.Rego,J.Leira,A.Gomis,R.CaramésyM.Andrade,«InnovaciónTurística:PerspectivasTeóricasyObjetosdeEstudio,»ROTUR,pp.19-50,2018.[17]D.Montaño,«Evaluationdigitaloftolosforthemanagementtheportafolioeducational,»MinervaJournal,vol.2,nº4,pp.55-61,2021.[18]M.Pérez,«¿Podremoscrearmáquinasverdaderamenteinteligentes?,»2018.[Online].Available:https://elpais.com/tecnologia/2018/03/27/actualidad/1522139782_730950.html..[19]J.Sanz,«QuéeslaLingüísticaComputacional,»2018.[Online].Available:http://www.full-on-net.com/blog/inteligencia-artificial/qu-es-la-lingstica-computacional.Suárez-Carreño et al. Smart models for cleaner production in Industry 4.0: A Scoping Review