Stage1:CorrespondedtothedefinitionoftheobjectivesandgoalsofPMLabouttheenvironmentalpolicyofSaquifrancia.Inaddition,thecompany'scurrentstatewasknown,rolesandresponsibilitiesweredelegated,obstaclestoimplementationwereidentified,conceptsandgoodpracticesweredefinedandenvironmentalregulationswereconsidered.Stage2:Atechnical-environmental-economicdiagnosisisgeneratedbeforetheprocessconsideringtherawmaterialsusedandrelevantinformationabouttheactivities.Stage3:Atechnical-economic-environmentalevaluationconsidersmaterials,monetaryunits,andinefficiencycosts,suchasprioritizationintermsofaction.Stage4:Cleanerproductionalternativesfromwasteand/orscrapofrawmaterial,water,energy,products,facilities,methods,andpersonnel.Stage5:Implementingalternativeswithinthecompanythroughanactionplanmustbecontrolledandevaluatedperiodically,consideringtheindicatorsgeneratedinStage1.I. IntroductionIntheproductionprocess,thereisalargeamountofwasteandemissionsduetothecontinuoustransformationsthattherawmaterialhas,whichimpliesawasteoftheresourcesusedandinefficiencyduringtheprocesses[1].Asaresult,socioeconomicproblemstranslateintothecostsofproduction,treatment,andfinaldisposalofwaste.Inthesameway,theydirectlyaffectpeople'squalityoflifeandtheenvironmentsurroundingthem.Generally[1],companiescontroltheamountofwasteoncegeneratedafterproductionprocesses,sotheydosothroughtechnologiesandtoolsthatrequireahighsumofinvestment.Cleanerproductionstrategiesfocusonintegratingpreventivesolutionsformanagingnaturalresourcesandreducingglobalpollution.EnvironmentalmanagementappliesCleanerProductiontechniquesfocusedonprocesses,products,andservicesthatrequiretransforminginputstogiveaddedvaluetocustomers.Itsmainobjectiveistooptimizetheseresourcesbymodifying,eliminating,orreplacingrawmaterials[2].Thedeteriorationandexploitationoftheenvironmentaretheproblemsthatarealteringclimaticconditions.EnvironmentalmanagementisanissuethatinvolvesnotonlyCleanerProductionstrategiesbutalsogoeshandinhandwithIndustry4.0becausethedevelopmentofnewgreentechnologiesallowsthereductionofinputsinhighquantitiessuchasgasoline,butinthesameway,thesebringnegativeconsequencestotheenvironmentinwhichpeoplearesurrounded[3].Theresponsibilityforsustainabledevelopmentlieswithallpeopletoimprovethequalityoflifeandenvironmentalconditions.II. DevelopmentEcuadorisacountryinwhichalargeamountofproductsresultingfromtherawmaterialcocoaisproducedandexported,thissincethecountryispresentoneofthehighestqualityseedswhichallowstogeneratechocolateswiththehighestlevel.Thus,infigures,Ecuadorhas12%ofthelandareacultivatedbycocoaandapproximatelyanincomeof$800,000aftertheexportofbeansintheregion[4].Withintheindustrialsector,measuresorprogramshavebeenpromotedthatcontributetothepropermanagementofresources,increaseefficiencyandstrategiesthatreducetheimpactorrisksforbothpeopleandtheenvironment.Inthisway,aroundtheworldcompaniesoptforcleanerproductionprojectsbecauseitallowsthemtobemuchmoresustainableovertime.Thisishowinthecountry,theSaquifranciafarm,whichislocatedintheprovinceofPastazaisresponsibleforthecultivationofcaneandcocoa;however,theyhavebegunapplyingthistypeofprojectsespeciallyintheprocessofobtainingcocoa,forthistheyhadfivephases:33ISSN-E:2737-6419AtheneaJournal,Vol.4,Issue11,(pp.32-37)Molina G. et al. Artificial intelligence and participation in environmental protection, industry, and society Withthisanalysiscarriedoutinthecompany,inadequatewaterconsumptionandhighlevelsofwasteweregenerated.Primarily,thePMLalternativesfocusedonimprovingtheprocessesinwhichresourcessuchaswaterandelectricitywereimplementedorusedandworkwasdonetogeneratecorrectwastemanagement.Inaddition,thefeasibilityanalysisfoundthatitisaviableprocesssincethereturnoninvestmentturnedouttobeapproximatelyoneyear[5].III. MethodologyThemethodologydevelopedwasdocumentarysincedifferentsourcesofpublishedinformationwerereviewedtoknowtheimpactsofcleanerproductioninindustrialscenariosandtheparticipationofsocietyinthisregard.Inaddition,artificialintelligence'snewdevelopmenttofacethenewtimes'environmentalchallengeswasevaluated.III. ResultsA.ElementsthatpreventthecreationofcleanerproductionproposalsinIndustry4.0Althoughindustry4.0seekstoreducetheamountofwasteandemissionscreatedbyoldorfewautomatedobjects,itmustbetakenintoaccountthatwhenmanufacturingthesenewtools,manyofthemrequiretheexploitationofminestoobtainorganicmineralsthatallowimprovingthepropertiesofautomation,Withoutrealizingthattheyarealteringtheecosysteminanimpactfulway,duetotheamountofnaturalspacetheyrequiretoobtaintheseminerals.Theindustrial4.0marketissochangingandexponentiallywayisgrowing.Therefore,oldobjectsbecomeobsolete,whichmakespeoplethrowthem,generatingmorepollution.Thisisbecausethemarketwillalwayslookformoreefficientproductsthatcanhavebettercharacteristicsintermsofconnectivity.Theinternethaseye-catchingfeaturesandnewfunctions.Generally,bysellingtheirnewproducts,telephonecompaniesmaketheoldphonesorlowerversionsnolongerhavethesamecompatibilitywithnewupdates.Therefore,inacertainway,theyforcetheircustomerstoacquiretheirnewproductsmoreefficientlyandinnovative.Whendiscussingcreatingrenewableenergies,youcanobserveacertainnumberofproblems,whichwillbedescribedbelow;whenusingsolarenergyforlargeindustries,theyneedtorealizethatsolarpanelsaffectbiodiversity.Thisisbecausemigratorybirdsthatpassthroughtheseplacescangetburnedbythevitalemanationofheat.Asfortheuseofwindenergy,inthesamewaywhenusinglargemills,thisaffectsanimalbiodiversityandgenerateshearingproblemsforpeopleneartheseplaces.B.MaterialsthatpreventbetteruseanduseofcleanerproductionAroundtheworld,differentindustriesgenerateorrequirematerialsthat,despitebeingtreatedand/orhandledinvariousways,theirconsequencesontheenvironmentcontinuetobegreater;accordingtotheUnitedNations,themetalsconsideredtohavethemostsignificantimpactontheenvironmentaregold,mercury,rhodium,oruranium.Thosematerialsthatmainlyresultfromminingextractionandexploitation,especiallythepost-miningprocess,arethemostcomplicatedandextendedaftertheoperationscarriedoutinaminingfield[6].Atpresent,itisidentifiedthatthereisanincreaseindemandforsomemetalssincetheyareusedforthedesignandcreationofnewtechnologiesrelatedtorenewableenergies;Thesematerialscanbeindium,platinum,indium,orselenium.However;alsootherproductswithahighenvironmentalimpactcanbeplastics,iron,orsteel[7].34ISSN-E:2737-6419AtheneaJournal,Vol.4,Issue11,(pp.32-37)Molina G. et al. Artificial intelligence and participation in environmental protection, industry, and society Amongothermaterialsarethosethatpollutetheatmosphere,evidencedthroughGHGemissionsbythechemicalsusedforextractionprocessessuchastransportingand/orcrushingalluvialmaterial.Theseturnouttobeharmfulduringtheimplementationprocessofacleanerproductionprojectbecauseitseekstoreducecostsandenvironmentalimpactandthattheprocessesaremoreefficient;however,thesematerialsmustbeappropriatelytreatedifitisnotdone,itcangeneratechangesinthenaturalenvironmentwhichinturncanaffectdirectlyinthecreationofnewprocessestotrytoeliminatethem,whichpreventspreventionstrategiesfrombeinggeneratedandcorrectiveactionsfrombeingchosen[8].Insuchaway,itcanbementionedthatespeciallythosematerialsrelatedtoextractiveindustriessuchasminingandoilarethosethatgeneratethemostsignificantimpactontheenvironmentand,althoughenvironmentalcaremeasuresorprojectsthatseeksustainabilitysought,canbecomplicatedsincetheactionstakenforthistypeofmaterialsasfortheactionoftheenvironmentanditscareafterthistypeofProcessareonlymeasuresthatturnouttobeminimizingandmorenotofpreventionandprotectionoftheenvironmentasofpeople.a.BigDatatogeneratenewproposalsforcleanerproductionFoodwasteisamajorglobalproblem.Severalcompanieshavebeencreatedtoaddressitinrecentyearssinceitisacrucialsustainabilityproblemsince1,300milliontonsaregeneratedworldwideyearly.TheFoodandAgricultureOrganizationoftheUnitedNationsestimatedthetotalcosttosocietyin2014at2.6trilliondollars.Manysmallbusinessesaimtoaddressthisproblembyactingatdifferentpointsinthesupplychain,fromsupplierstoconsumers,andatdifferentlevelsofthefoodwastehierarchy,frompreventiontoenergyrecovery,redistribution,reuse,andrecycling.Bigdataanalysis,usinglargeandcomplexdatasetsmanipulatedbysophisticatedcomputerprograms,isincreasinglyusedbycompaniesinvarioussectors.Therefore,thisproposalhasanalyzedcasestudiestoprovideaframeworkforunderstandingdifferentfoodwastereductionbusinessmodelsandhowtheycouldbenefitfromusingBigData[9].b.ArtificialintelligencefavorsnewproposalsforcleanerproductionArtificialintelligenceisatoolthathasbecomeatrendtodayasitreducescostsandimprovesproductivity,butthatisnotallduetoitsaccuracyandtheintegrationofinformationthatthistoolentails.ItsresultsareacleanerproductionsincegreaterprecisionandefficiencyrepresentalowerpercentageofwastegeneratedwithintheprocessesinadditiontohavingenoughflexibilityofuseandreliabilityoftheDataobtained,makingpossibleabetterimplementationofcontinuousimprovementprojects.Evolutionisinevitableinbothpeopleandcompaniesanditisafactthatthedigitizationofdataandprocesses,thatis,theuseofthesoftware,isfundamental,andautomationisastepforwardforcompaniessinceitrepresentsgreaterefficiencyintheirprocesses.Itshouldbeconsideredthatthedatacollectiontookanextendedperiod.Therewasapercentageoferror:datawithenoughvariability.However,usingartificialintelligencenotonlycanautomatepartsoftheprocessoforganizations,butitispossibletocollectalargeamountofdata,suchasthetimeittakessuchactivity.Thereisalargepercentageofreliabilityinadditiontocontributingtodecision-making.Artificialintelligenceisbasedontwoareas,thesoftware,whichcontainstheprogrammingoftheactivitytobecarriedout,andtheprogrammingofsensorsandactuators,amongotherparts,necessaryfortherobotorartificialintelligencetofunctioncorrectlyaccordingtoitsroleandactivities.Ontheotherhand,thereisthehardwarethatincludesthesensors,theactuators,andthecomponentsthatwillworkbasedonwhatisrequestedbyprogramminginthesoftware.Artificialintelligencecreatesnewopportunitiesforflexibleandefficientproduction,evenforcomplexandincreasinglycustomizedproductsmanufacturedinsmallquantities.35ISSN-E:2737-6419AtheneaJournal,Vol.4,Issue11,(pp.32-37)Molina G. et al. Artificial intelligence and participation in environmental protection, industry, and society Inaddition,theartificialintelligencemarketisincreasinglydemandedbydifferentorganizationsduetoitsbenefits.Althoughitrepresentsasignificantinvestmentforcompanies,theresultsandadvantagesatacompetitivelevelmakeitviableandprofitabletoimplement.By2035,intelligentanddigitallynetworkedsystemsandprocesschainscouldrepresentanadditionalgrowthofaround420billioneuros,onlyinWesternEurope.AccordingtoastudybyPwC,AIcancontributeuptoUS$15.7trilliontotheglobaleconomyby2030.c.IdeabasedonartificialintelligenceandBigDataforacleanerproductionplanintheindustryBigData,beingalarge-scaledataanalysistool,representsanopportunitytodemocratizeaccesstoinformationonenvironmentalissues,helpingintheprocessesofmeasuringscenariosandbaselinesforbothpublicandprivatedecision-making.ArtificialIntelligencecanalsobeusedtosignificantlyimprovedifferentweatherforecastsworldwide.Thistechnologyallowsdatatobeanalyzedinreal-timeandwithaminimummarginoferroraboutmeteorologicalcatastrophes.Thus,byusingvariousmathematicalmodels,itispossibletoofferdifferentsolutionstopreventthistypeofdisaster,creatingearlywarningsandadequatelycoordinatingthemanagementofemergencies.Artificialintelligence,togetherwithBigData,allowsustocreatesolutionstosociety'senvironmentalproblems.Thankstoallthetechnologicalresourcesthatexistintheworldcanbeusedtogenerateenvironmentalimpactandtherebytransformindustries,forthisthesesystemsmustguaranteetoimprovethequalityofliferelatingtotheenvironment,soitisintendedtousethistechnologyasameansofmonitoringcontrollingriskareastopredictsituationsinthefutureanddesignactionplanswithpositiveresults.Thesetechnologiesarenecessarytoavoidcausingenvironmentaldamagebecausetheycanautomatevariousactivities,includingimprovingweatherforecasts[10].ConclusionsArtificialIntelligenceandBigDatatoolsarepartofthenewinstrumentsthatarepartofanewgenerationandcanbedecisiveindevelopinganymodernproject.Theyareconsiderednecessaryforvaluinglargeprojectsofexcellentcaliberworldwide.Itsuseinanecologicalprojectofcleanerproductioncanhelptheenvironmentinmanyways.Oneofthemisperformingseveralsimulationsofdifferentenvironmentalproblemsand,thus,togetherwithBigDatacalculatingthenecessaryvariablestoknowtheeffectivenessofthedecisiontakenortheenvironmentalproposalyouwanttoexecute.[1]A.Bernal,C.BeltránandA.Marquez,"ProducciónMásLimpia:unarevisióndeaspectosgenerales.,"I3+,pp.66-85,2017.[2]I.Varela-Rojas,"Definicióndeproducciónmáslimpia,"RevistaTecnologíaenmarcha,p.3,2003.[3]F.Fajardo,"Laproducciónmaslimpiacomoestrategiaambientalenelmarcodeldesarrollosostenible,"RevistaIngeniería,MatemáticasyCienciasdelaInformación,pp.47-59,2017.[4]"DavidPérez,"JournalofCleanerProduction,vol.112,no.4,pp.2560-2568,2016.[5]P.Ramos-Ramos,D.Guevara-Llerena,L.Sarduy-PereiraandK.Diéguez-Santana,"Producciónmáslimpiayecoeficienciaenelprocesadodelcacaco:uncasodeestudioenEcuador,"Investigación&Desarrollo,vol.20,no.1,2020.[6]J.Kretschmann,P.MelchersandGoerke-Mallet,"DoneforGoodResultadosdelainvestigaciónposminería,"TechnicHochschule,Lübeck,2022.[7]A.Valero,G.CalvoandA.Valero,"Nuevosmateriales,nuevastecnologíasynuevosretosdelatransiciónecológica,"vol.128,pp.30-41,2021.[8]T.Vilmer,R.YessicaandL.Danny,"Sostenibilidadambientalenlamineríadematerialesaluviales:elcasodeRioNegro,Dibulla,Colombia,"Informacióntecnológica,vol.32,no.6,2021.36ISSN-E:2737-6419AtheneaJournal,Vol.4,Issue11,(pp.32-37)Molina G. et al. Artificial intelligence and participation in environmental protection, industry, and society [9]Environment,"Potentialofbigdataanalyticsinfood-wastereductionbusinesses.,"2022.[Online].Available:https://environment.ec.europa.eu/news/potential-big-data-analytics-food-waste-reduction-businesses-2022-11-09_en.[10]D.Experts,"BigDatautilizadaenelmedioambiente,"DbaExperts,2021.[Online].Available:https://dbaexperts.tech/wp/database/big-data-utilizada-en-el-medio-ambiente/.37ISSN-E:2737-6419AtheneaJournal,Vol.27,Núm.118,(pp.32-37)AuthorsKarenSarahiMolinaGoyes.EstudiantedelacarreradeIngenieríaindustrialenlaUniversidaddelasAméricasenQuito,Ecuador.IgnacioSandovalDuran.EstudiantedelacarreradeIngenieríaindustrialenlaUniversidaddelasAméricasenQuito,Ecuador.MiguelAlejandroEspinosaRamos.EstudiantedelacarreradeIngenieríaindustrialenlaUniversidaddelasAméricasenQuito,Ecuador.IsaacAndrésCumbaFlores.EstudiantedelacarreradeIngenieríaindustrialenlaUniversidaddelasAméricasenQuito,Ecuador.DianaAlejandraCalderonTuarez.EstudiantedelacarreradeIngenieríaindustrialenlaUniversidaddelasAméricasenQuito,Ecuador.Molina G. et al. Artificial intelligence and participation in environmental protection, industry, and society