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Abstract. - The objective of this work was to diagnose faults in squirrel-cage induction motors during the 

startup transient, by analyzing the stator current signal. To achieve this, low- and medium-voltage motors 

were modeled in Simulink using MATLAB. Previously, the fault due to low insulation was diagnosed through 

a static test. It was demonstrated that, during the startup transient, the low insulation fault manifests 

through a Daubechies wavelet analysis at level 8 of the current signal. The fault was identified in the detail 

levels 1, 2, 5, 6, 7, and 8, for both low-voltage and medium-voltage motors. 

 

Keywords: wavelet, daubechies, isolation. 

 

Diagnóstico de falla de bajo aislamiento en el transitorio de arranque de motores de 

inducción con rotor jaula de ardilla mediante análisis de wavelet 
 

Resumen: El objetivo de este trabajo fue diagnosticar fallas en motores de inducción con rotor de tipo jaula 

de ardilla durante el transitorio de arranque, mediante el análisis de la señal de corriente del estator. Para 

ello, se modelaron motores de baja y media tensión en Simulink, utilizando MATLAB. Previamente, la falla 

por bajo aislamiento fue diagnosticada mediante prueba estática. Se demostró que, durante el transitorio 

de arranque, la falla de bajo aislamiento se manifiesta a través de un análisis de wavelet Daubechies de nivel 

8 aplicado a la señal de corriente. La falla se evidenció en los niveles de detalle 1, 2, 5, 6, 7 y 8, tanto en 

motores de baja tensión como en motores de media tensión.   

 

Palabras clave: wavelet, daubechies, aislamiento. 
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I. INTRODUCTION      

 

Induction Motors (IMs), with capacities ranging from a few watts to megawatts, are employed as prime 

movers and play a fundamental role in today's industries [1]. Due to their robustness, reliability, and low 

maintenance costs, IMs have received increasing attention in the automotive industry, electric vehicle 

traction, and power conversion systems [1]. Induction machines are gaining popularity in renewable energy 

applications, which demands constant research on their performance. The lack of regulation of failures in 

processes causes considerable economic losses and degrades process performance [2]. Induction motors 

are put to the test in a variety of circumstances and environments. Motor failure implies unwanted 

downtime, costly repairs, and in some cases, can even lead to casualties [3]. 

 

Motor current analysis is a valuable tool for the detection and diagnosis of faults in induction motors. This 

technique allows to prevent breakdowns, reduce maintenance costs, and improve the safety of facilities. 

Motor current signature analysis (MCSA) is considered the most common technique for fault analysis [4]. 

The phase current signal contains components that depend on the motor's operation, a product of the 

rotating flux. The appearance of faults causes changes in the supply current with specific harmonic content 

that depend on the type of fault. The MCSA technique uses stator current measurements to detect these 

harmonics, and although they are not desired, they are used for fault analysis. MCSA provides current 

spectra with information to detect electrical and mechanical faults. Current measurements in a three-phase 

induction motor can only be performed at specific times. The usual approach is to measure the current 

during motor operation, as it is the simplest way to do so and provides input data of sufficient quality. This 

technique is used by most condition monitoring methods. On-line current measurements can be divided 

into two types: with load and without load. Another convenient time for current signal monitoring is within 

the startup window [5]. 

 

Starting currents can offer better options for motor condition analysis, as they are measured at higher 

motor slip and with a higher signal-to-noise ratio. This facilitates the detection and evaluation of the spectral 

components of the signal. The most frequent causes of induction motor failures are winding and insulation 

problems, accounting for between 30% and 40% of total failures [6]. Insulation failures are responsible for 

80 to 90% of this percentage. For medium voltage drives [7]. Stator inter-turn short circuit (ITSC), present 

in approximately 40% of induction motor (IM) failures, is a common defect in these machines. While a few 

shorted turns do not usually show any noticeable physical signs, they can cause considerable damage to 

the insulation in a short period of time [8]. Early detection of this fault can minimize further damage to 

adjacent turns and the stator core, which would reduce maintenance costs and motor downtime [9]. Most 

insulation faults affecting induction motors occur between phase and ground. Common practices for 

assessing insulation condition require the motor to be stopped and cannot provide information about the 

degrading agent affecting the motor [10]. 

 

An ITSC fault creates harmonic frequency components in the motor current. The magnitude and frequency 

of these harmonics change continuously with load variations. To accurately identify faults in induction 

motors (IMs), cutting-edge techniques have been developed that extract telltale features from current 

signals. Among the most notable tools are; Fast Fourier Transform (FFT): This technique decomposes the 

current signal into its frequency components, revealing unique patterns associated with different types of 

faults; Short Time Fourier Transform (STFT): Unlike FFT, STFT analyzes the current signal in shorter segments, 

providing a more detailed view of how faults evolve over time; Power Spectral Density (PSD): This technique 

quantifies the distribution of energy in the frequency spectrum, allowing the presence and severity of faults 

to be identified with greater precision. Traditional fault diagnosis techniques in induction motors, based on 

steady-state current, have limitations such as sensitivity to operating conditions and difficulty in detecting 

incipient faults. One of the most important analysis tools in both the frequency and time domains is the 

wavelet.  
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Multiresolution analysis and good time localization make wavelets very attractive for fault diagnosis 

research. Wavelets are localized in both the time and frequency domains because they have limited time 

duration and frequency bandwidth [11]. 

 

II. DEVELOPMENT 
 

A. Mathematical model of the induction motor in the reference frame fixed to the rotor. 

 

  The Simulink block used in this study. implements equations that are expressed in a stationary rotor (dq) 

reference frame. The d axis is aligned with an axis. All quantities in the rotor reference frame are referred 

to the stator [12]. 

Equations to calculate electrical speed (ωem) and sliding speed (ωslip). 

 
𝜔𝑒𝑚 = 𝑃𝜔𝑚 (1) 

𝜔𝑠𝑙𝑖𝑝 = 𝜔𝑠𝑦𝑚 − 𝜔𝑒𝑚 (2) 

 

  To calculate the electrical speed of the rotor dq with respect to the rotor axis A (dA), the difference 

between the speed of the shaft and the stator is used (da) and sliding speed: 

 

𝜔𝑑𝐴 = 𝜔𝑑𝑎 − 𝜔𝑒𝑚 (3) 

 

o simplifies the equations for flux, voltage and current transformations, the block uses a stationary 

reference frame: 
𝜔𝑑𝑎 = 0 (4) 

𝜔𝑑𝐴 = −𝜔𝑒𝑚 (5) 

  Flow 

[
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  Current 
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(7) 

  Inductance 

𝐿𝑠 = 𝐿𝑙𝑠 + 𝐿𝑚  
𝐿𝑟 = 𝐿𝑟𝑠 + 𝐿𝑚 

(8) 

  Electromagnetic torque 

𝑇𝑒 = 𝑃𝐿𝑚(𝑖𝑠𝑞𝑖𝑟𝑑 − 𝑖𝑠𝑑𝑖𝑟𝑞) (9) 

 

  Invariant power dq transformation to ensure dq and three-phase powers are equal 

 

[
𝑣𝑠𝑑

𝑣𝑠𝑞
] = √

2

3
  [

cos(𝛩𝑑𝑎) cos (𝛩𝑑𝑎 −
2𝜋

3
) cos (𝛩𝑑𝑎 +

2𝜋

3
)

−sin(𝛩𝑑𝑎) −sin (𝛩𝑑𝑎 −
2𝜋

3
) −sin (𝛩𝑑𝑎 + −

2𝜋

3
)

] [

𝑣𝑎

𝑣𝑏

𝑣𝑐

] 

 

[
𝑖𝑎
𝑖𝑏
𝑖𝑐

] = √
2

3
  

[
 
 
 
 

cos(𝛩𝑑𝑎) −sin(𝛩𝑑𝑎)

cos (𝛩𝑑𝑎 −
2𝜋

3
) −sin(𝛩𝑑𝑎)

cos (𝛩𝑑𝑎 +
2𝜋

3
) − sin(𝛩𝑑𝑎)

]
 
 
 
 

[
𝑖𝑠𝑑
𝑖𝑠𝑞

] 

(10) 
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  The equations use these variables 

 

ωm: Rotor angular speed (rad/s) 

ωem: Electric rotor speed (rad/s) 

ωslip: Electric rotor sliding speed (rad/s) 

ωsyn: Synchronous rotor speed (rad/s) 

ωda: dq electrical speed of the stator with respect to the axis a of the rotor (rad/s) 

ωdA: dq electrical speed of the stator with respect to the rotor axis A (rad/s) 

Θda: dq electrical angle of the stator with respect to the a axis of the rotor (rad) 

ΘdA: dq electrical angle of the stator with respect to the A axis of the rotor (rad) 

Lq, Ld: Inductances of the q and d axes (H) 

Ls: stator inductance (H) 

Lr: rotor inductance (H) 

Lm: Magnetizing inductance (H) 

Lls: Stator leakage inductance (H) 

Llr: Rotor leakage inductance (H) 

vsq, vsd: Stator voltages on the q and d axes (V) 

isq, isd: Stator currents in the q and d axes (A) 

λsq, λsd: Stator flow in the q and d axes (Wb) 

irq, ird: Rotor currents in the q and d axes (A) 

λrq, λrd: Rotor q and d axis flow (Wb) 

va, vb, vc: Stator voltage phases a, b, c (V) 

ia, ib, ic: Stator currents phases a, b, c (A) 

Rs: Resistance of stator windings (Ohm) 

Rr: Rotor winding resistance (Ohm) 

P: Number of pole pairs 

Te: electromagnetic torque (Nm) 

 

A. Wavelet transforms 

 

  The wavelet transform (WT) is a signal analysis technique that solves the time-frequency resolution 

problems of the Fourier transform. The WT is based on a function called the wavelet mother function, which 

is used to decompose the signal into sub-bands. Wavelet functions can be classified into families, and the 

choice of the appropriate family depends on the characteristics of the signal to be studied. The most used 

wavelet functions are Daubechies, coiflet, simlet, biorthogonal and discrete Meyer. [13]. 

 

  Identification of the fault can be done in two ways: by analyzing the coefficients resulting from the 

decomposition of the signal or by studying the high-level wavelet signals. High-level wavelet signals are 

those that contain information about the nature of the failure. The integral wavelet transforms of a function 

f(t) ϵ L^2 with respect to a wavelet analyzer ∅ is defined as [14]: 

 
 

𝑊𝜓𝑓(𝑎, 𝑏) = ∫ 𝑓(𝑡)𝜓𝑏,𝑎(𝑡)
∞

−∞

𝑑𝑡 
(11) 

 
Where 

𝜓𝑏,𝑎(𝑡) =
1

√𝑎
𝜓

𝑡 − 𝑏

𝑎
            𝑎 > 0 

(12) 
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  The parameters b and a are called translation and dilation parameters respectively. Normalization factor 

is included √𝑎    so that ‖𝜓𝑏,𝑎‖ = ‖𝜓‖ 

 

  The expression for the inverse wavelet transform is 

 

𝑓(𝑡) =
1

𝐶𝜓

∫ 𝑑𝑏 ∫
1

𝑎2

∞

−∞

∞

−∞

[𝑊𝜓𝑓(𝑏, 𝑎)]𝜓𝑏,𝑎(𝑡)𝑑𝑎 
(13) 

  Where 𝐶∅ is a constant that depends on the choice of the wavelet and is given by:  

𝐶𝜓 = ∫
|�̂�(𝜔)|

|𝜔|
𝑑𝜔 < ∞ 

(14) 

 

  The coefficients constitute the results of a regression of the original signal carried out on the wavelets. A 

graph can be generated with the x-axis representing the position along the signal (time), the y-axis 

representing the scale, and the color at the x-y point representing the magnitude of the wavelet coefficient 

C. These coefficient plots are generated with graphic tools. 

 

A. Discrete Wavelet Transform (DWT) 

 

  The discrete wavelet transform performs the decomposition of a signal 𝑥[𝑛] in an approximation 

coefficient at a given level of decomposition 𝑘, 𝐴𝑘[𝑛], and 𝑘 detail signs𝑑𝑗[𝑛] con 𝑗 = 1…𝑘 [15]. 

 

𝑥[𝑛] = 𝐴𝑘[𝑛] + ∑𝑑𝑗[𝑛]

𝑘

𝑗=1

= ∑𝛷𝑖
𝑘[𝑛] + ∑∑ 𝑑𝑖

𝑗

𝑖

𝑘

𝑗=1𝑖

𝛹𝑖
𝑗[𝑛] 

(15) 

 

  Where 𝛷𝑘  y 𝛹𝑗 They are the scaling function at level k and the wavelet function at level j respectively. On 

the other hand, the coefficients 𝑎𝑖
𝑘 y 𝑑𝑖

𝑗
se calculan utilizando el algoritmo de codificación por sub-bandas 

[16]. 

Discrete Wavelet Coiflet 𝐵𝑘 = (−1)𝑘𝐶𝑁−1−𝑘 (16) 

Wavelet Cohen Daubechies 𝐵𝑘 = (−1)𝑘𝐶𝑁−1−𝑘 (17) 

Wavelet Daubechies 𝐵𝑘 = (−1)𝑘𝐶𝑁−1−𝑘 (18) 

Binomial-quadrature mirror 

filter (QMF) ℎ(𝑛) = ∑ 𝜃𝑟𝑋𝑟

𝑛−2 2⁄

𝑟=0

(𝑛) 
(19) 

Wavelet Haar 𝜓𝑛,𝑘 = 𝜓(2𝑛𝑡 − 𝑘) (20) 

Wavelet Mathieu  
𝐻𝑣(𝜔) = −𝑒−𝑗𝑣𝜔 2⁄

𝑐𝑒𝑣(𝜔 2,𝑞⁄ )

𝑐𝑒𝑣(0, 𝑞)
 

(21) 

Wavelet Legendre 𝐻𝑣(𝜔) = 1 √2⁄ ∑ℎ𝑣

𝑘𝜖𝑍

𝑒−𝑗𝜔𝑘 (22) 

 

 

III. METHODOLOGY 
 

  In this work we start from the fact that we have proposed the following hypothesis: 

 

  Hypothesis: The hypothesis posits that Wavelet analysis using Daubechies wavelets applied to squirrel-

cage induction motors will effectively detect and diagnose insulation faults, considering the specific motor 

properties that influence the dynamics of these faults. A significant relationship is expected between the 

individual characteristics of the studied motors and the Wavelet analysis' ability to accurately and timely 

identify existing insulation faults, which will contribute to improving predictive maintenance practices in 

industrial machinery. 
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  Study Population and Sample: The study population consisted of 477 electric motors from a petrochemical 

plant with a history of low insulation problems in some motors. A sample of 20 motors with data from 

previous static insulation tests was available. The objective was to employ wavelet analysis to evaluate these 

motors and demonstrate its ability to diagnose low insulation faults. 

 

  Motor Simulations: In this scenario, 20 squirrel-cage induction motors were simulated in Simulink. For this 

study, one low-voltage and one medium-voltage motor were selected. The low-voltage motor belonged to 

a process fluid pump in the Urea plant, and the medium-voltage motor belonged to a pump in the plant's 

cooling water system. These motors were chosen because the low-voltage motor was the most recent one 

subjected to a static insulation test, and the insulation resistance value obtained was less than 200 kΩ, which 

is below the value established in IEEE Standard 43-2013 (5 MΩ between phases and ground and between 

phases for low-voltage motors). The medium-voltage motor was selected because it was one of the highest-

power motors in the population, allowing the proposed methodology to be validated for medium-voltage 

motors as well. 

 

  Taking into consideration that if a ground fault is introduced in phase C of the motors, modeling the 

insulation resistance of the winding. Starting from the fact that; You can emulate the insulation resistance 

to ground by connecting a resistor to ground for each coil [17]. So to emulate insulation deterioration, a 

capacitor is added, which increases the insulation capacitance. 

 

 
Fig. 1. Equivalent circuit of electrical insulation system [18]. 

 

  Modeling the circuit in figure 1 

𝐼𝑐(𝑡) + 𝐼𝑅(𝑡) = 𝐼(𝑡) 

 

(23) 

𝐶𝑒𝑞𝑑𝑣(𝑡)

𝑑𝑡
+

𝑉(𝑡)

𝑅𝑒𝑞
= 𝐼(𝑡)  

 

(24) 

This approach was chosen because an aged insulating material would also cause a similar increase in 

capacitance. The severity of insulation degradation can be varied depending on the capacitance of the 

inserted capacitor. Phase to ground capacitances are between 1.5 nF and 21 nF [19]. The "3-phase induction 

motor" block from the Simscape Electrical library in Simulink was used. To model each engine individually. 

The parameters of each engine were configured according to the actual specifications or available reference 

data. In which we can obtain the data required by the software, below we show the data of the low voltage 

model motor. 

 

Nominal Voltage (Vn) = 460; 
Nominal frecuency (fn) = 60; 
Rated Current (In) = 18.25; 
Nominal Torque (Tn) = 49,8;  
Maximum speed (Ns) = 1800;  
Nominal speed (Nn) =1750; 
Starting Current to Rated Current Ratio (Ist/In) = 6; 
Starting Torque to Nominal Torque Ratio (Tst/Tn) = 2.5; 
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Breaking Torque to Nominal Torque Ratio (Tbr/Tn) = 3; 
power factor (pf)= 0.8; 

 

  With these data we introduce them into the parameter estimation block; 

 

  
Fig. 2. Parameters of Low Voltage Motor 460 V, 11 KW; simulated in simulink. 

 

  The C phase current signal is extracted and brought into MATLAB to perform a wavelet analysis. Using the 

"3-Phase Induction Motor" block from the Simscape Electrical library in Simulink to model each motor. 

 

 
Fig. 3. Low and medium squirrel cage motor simulation; healthy state (a). Low and medium squirrel cage motor 

simulation; Insulation failure (b) 

 

  The simulation of the start-up of the two induction machines in a healthy state was carried out. 

Subsequently, the current signal of the start transient of phase C was extracted, with the Simulink Workspace 

block into Matlab, for the healthy and failed cases. The signal was transferred from the Simulink workspace 

to MATLAB for wavelet analysis using the level 8 Daubechies parent function. 

 

IV. RESULTS 

 

  The results of the simulation of the start-up of the induction machines revealed a change in the signal at 

all levels of detail; but more pronounced at the level of detail 1, 2, 5, 7 and 8; from Daubechies wavelet 

analysis. In the spectrum, the modification of both signals can be observed for both the medium voltage 

motor and the low voltage motor. Figure 5 shows the decomposition of the wavelet signal at level 8 in the 

healthy state of the engine. 
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Fig. 4. Wavelet Daubechies Level 8 Low Voltage Motor 460 V, 11 KW; shows the spectrum of the engine in healthy 

state. 

 

 
 

Fig. 5. Wavelet Daubechies Level 8 Low Voltage Motor 460 V, 11 KW; shows the spectrum of the motor in the fault 

state with low insulation. 

 

  Figure 4 shows the decomposition of the wavelet signal at level 8 in the healthy state of the engine. When 

viewing both spectra, we can observe the difference that exists with respect to figure 5 at the level of detail 

Daubechies 1, 2, 3, 5, 7 and 8; how the signal changes when a 200kΩ low insulation fault is introduced. 
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Fig. 6. Wavelet Daubechies Level 8 Medium Voltage Motor 13800 V, 3 MVA; shows the spectrum of the engine in healthy state. 

 

 
Fig. 7. Wavelet Daubechies Level 8 Medium Voltage Motor 13800 V, 3 MVA; shows the spectrum of the motor with insulation 

failure for 200kΩ. 

 

  Figure 7. Wavelet Daubechies Level 8 Medium Voltage Motor 13800 V, 3 MVA; simulated in simulink; 

shows the spectrum of the engine in healthy state. Figure 8; Wavelet Daubechies Level 8 Medium Voltage 

Motor; We can observe the difference with respect to figure 7 in the level of detail Daubechies 8, 7 and 6 in 

this case as the signal changes when a low insulation fault of 200kΩ is introduced. 

 

  Next we analyze wavelet histograms which can show how wavelet coefficients are distributed at different 

scales. In this case, they are used to analyze the health status of low and medium voltage motors, both in 

healthy conditions and with failure due to low insulation. 
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Fig. 9. Histograms. Wavelet Daubechies Level 8 Medium and low voltage motor. 

 

  Figure 9 shows Histograms. Wavelet Daubechies Level 8 Medium and low voltage motor. The first top left 

histogram (a) belongs to the low voltage motor in healthy state, the second top right side histogram (b) 

belongs to the motor in failed state with low insulation. The lower left side histogram (c) belongs to the 

medium voltage motor in healthy state. The lower right-side histogram (c) belongs to the failed medium 

voltage motor with low insulation. The histograms of the low voltage motor represent a significant 

difference in the distribution of energy levels, both have a unimodal distribution, but the one in the failed 

state is more asymmetric than that of the motor in the healthy state, with a longer tail to the right. . This 

may indicate a greater tendency towards higher wavelet coefficient values, which could be related to low 

insulation failure. The histograms of the medium voltage motor present a bimodal distribution, and a 

difference is made in terms of the peaks on the left side with two almost uniform bands in the case of the 

healthy motor. The medium voltage healthy state histogram is slightly asymmetric to the right, similar to 

that of the low voltage motor in healthy state. 

  

  In the case of the low voltage motor, we have then simulated 2 low insulation scenarios; in which it could 

be detected that as the insulation degrades at 20 kΩ and 2 kΩ; You can continue to observe the changes 

in the levels of detail of the wavelet spectrum, in addition to the energy distribution changing in the signal; 

In Table 1 we can observe the changes in the statistics of the signal energy distribution for each scenario, 

motor in healthy state, failed motor with 200 kΩ, 20 kΩ and 2 kΩ; 

 

                                Table 1. the statistics of the signal energy distribution. 

Statistical Healthy Isolation 200k Isolation 20k  Isolation 2k 

mean -0,3463 -1,011 -0,7334  -0,7312 

median 2,347 0,8336 1,93  1,966 

miximum 131,2 131,5 131,4  131,4 

minimum -135,6 -135,3 -135,6  -135,6 

range 266,9 266,9 267  167 

standard dev 63,46 63,4 63,24  63,24 

median abs dev 36,6 39,91 38,96  39,89 

mean abs dev 49,62 49,47 49,41  49,42 

l1 norm 1,83E+04 1,83E+04 1,82E+04  1,82E+04 

L2 norm 1216 1220 1215  1215 

max norm 135,6 135,3 135,6  135,6 
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  IEEE Standard 493 provides valuable information on expected failure rates for high-power electric motors. 

According to this standard, a differentiation in failure rates is observed depending on the operating voltage 

and the type of motor:Motores de inducción: 

 

  Less than 1000 Volts: The estimated failure rate is 0.0824. From 1000 to 5000 Volts: The estimated failure 

rate is 0.0714 [20]. Taking this reference for our population at this failure rate, it is likely that in a year we 

will have 32 low voltage motors and 7 medium voltage motors. Therefore, it would be estimated that of the 

31 low voltage motors, taking the reference mentioned above, 40% of the failures will be due to winding 

problems. We include in these problems generated by insulation failures; With this probability, 13 low 

voltage motors and 7 medium voltage motors would fail, so to validate the tests we carried out simulations 

taking these samples as a reference. 

 

  We wish to evaluate whether the diagnosis of failure due to low insulation of electric motors using 

Daubuchies 8 wavelet transform signal analysis at level 8 is effective to identify failures in low voltage 

motors. There is data from a sample of 13 low voltage motors, where 12 motors were correctly diagnosed 

as failed. The failure rate of low voltage motors provided by the IEEE (0.0824) and the EPRI estimate of the 

proportion of failures due to insulation problems (40%) are taken as a reference. Hipótesis: 

 

  Null hypothesis (H0): Diagnosis by wavelet transform has no effect on the identification of faults due to 

low isolation, that is, the probability of a correct diagnosis is not different from the random probability. 

 

  Alternative hypothesis (H1): Diagnosis by wavelet transform does have an effect on the identification of 

faults due to low isolation, that is, the probability of a correct diagnosis is greater than the random 

probability. (We work under the assumption that this hypothesis is correct). 

 

Statistical test selection: 

  Since we are trying to evaluate the proportion of correct diagnoses in a small sample (n < 30), the student’s 

t test for a single sample can be used. 

 

Calculation of the test statistic: 

  Number of successes (X): 12 engines diagnosed as failed (of 13 engines in the sample). 

Population means under the null hypothesis (μ0): 0.4, since it is estimated that 40% of the motors are failed 

due to low insulation. 

 

Sample standard deviation (s): It is calculated using the formula: 

   

𝑠 = √
(∑𝑥𝑖 − 𝜇0)2

(𝑛 − 1)
 

 

(25) 

In this case, s = 0.241. 

 
 
 

test statistic t: 

𝑡 =
(𝑋 − 𝜇0)

(𝑠
√𝑛⁄ )

=
(12 − 0,4)

(0,241
√12

⁄ )
= 2,49 

 

(26) 

 

Degrees of freedom: 

𝑔𝑙 = 𝑛 − 1 = 13 − 1 = 12 

 

(27) 
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Significance level: 

  A significance level (α) of 0.05 is established. 

 

Calculation of p value: 

  Since this is a right-sided test, the p-value is calculated using Student's t-table with 12 degrees of freedom 

and finding the area in the tail of the test statistic t = 2.49. In this case, the p value is 1.782 in table. 

𝑡𝑒𝑥𝑝 > 𝑡𝑡𝑎𝑏 

  The null hypothesis is rejected and the alternative hypothesis is accepted. This means that there is sufficient 

evidence to conclude that the Daubechies wavelet diagnostic method does have a significant effect on the 

identification of low insulation faults in low voltage electric motors. 

 

CONCLUSIONS 
 

  Daubechies Level 8 Wavelet analysis is presented as a novel and effective tool for diagnosing low insulation 

faults in the stator coils of squirrel cage rotor induction motors, both at low and medium voltage. This 

technique, based on the analysis of the stator current signal during the start-up transient, allows low 

insulation faults to be accurately identified through characteristic changes in the wave spectrum and energy 

distribution of the current signals. Levels of detail 8, 7, 6 and 5 are particularly relevant for the detection of 

these faults. The detail curve patterns vary significantly in the failed engine with respect to the healthy 

engine. The wavelet histograms show a difference in the distribution of energy levels between the healthy 

and the failed motor, indicating a greater tendency towards higher wavelet coefficient values in the failed 

motor. The student’s t test for a single sample demonstrates that wavelet transform diagnosis does have a 

significant effect on the identification of faults due to low insulation in low voltage electric motors.  Unlike 

traditional static-state insulation testing, Daubechies Level 8 Wavelet Analysis offers early and accurate fault 

detection, even in the presence of low insulation values. This capability opens a promising path for the 

implementation of the method in condition monitoring systems, improving predictive maintenance 

practices and reducing the incidence of catastrophic failures in electric motors. This study provides strong 

evidence supporting Daubechies Level 8 wavelet analysis as a valuable tool for the diagnosis and prevention 

of low insulation faults in induction motors. 
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