Electromagnetic model for the study of transitory phenomena associated with atmospheric discharges on transmission lines
PDF
HTML

Keywords

Atmospheric discharges
Maxwell-Heaviside equations
FDTD
ABC-Liao
Thin-Wire Model
transmission lines

How to Cite

Olivo, A., & Toledo, J. (2021). Electromagnetic model for the study of transitory phenomena associated with atmospheric discharges on transmission lines. Athenea Engineering Sciences Journal, 2(5), 5-28. https://doi.org/10.47460/athenea.v2i5.22

Abstract

The analysis of a research work developed in the company C.V.G CARBONORCA of Venezuela is presented, which has two gas purification plants for the cooking area, designed to purify the gas that comes from the cooking ovens. Each plant is made up of solenoid valves, pneumatic valves, transmitters, process mimic panels, and a supervisory system. All these elements are governed by a SIEMENS S5-115U PLC which is in a state of obsolescence, which is why the replacement of these automata by ALLEN BRADLEY ContolLogix automata was designed, in order to guarantee continuity in operations in the plant. The research was done with a descriptive design of the field experimental type. A code for each gas treatment plant was obtained in RSLOGIX 5000 v17.00.00 and the update of the database of the supervisory system. The operation of the program was also verified through a simulation of the plant in a supervisory system, the deployment of which was designed for this purpose.

Keywords: Automation, Modernization, ControlLogix, Supervisory System, Mimic Panel.

https://doi.org/10.47460/athenea.v2i5.22
PDF
HTML

References

M. Uman, D. Mclain, and P. Krider. “The Electromagnetic Radiation from a finite antenna” AJP, vol. 43, 1975. 1975.

A. Agrawal, H. Price, and S. Gurbaxani. “Transient response of multiconductor transmission lines excited by a no uniform electromagnetic field”. IEEE Transactions on electromagnetic compatibility, (2), 119-129. 1980.

C. Nucci, F. Rachidi, M. Ianoz and C. Mazzetti. “Comparison of two coupling models for lightning-induced overvoltage calculations”. IEEE Transactions on power delivery, 10(1), 330-339. 1995.

R. Thottappillil and M. Uman. “Comparison of lightning return‐stroke models”. Journal of Geophysical Research: Atmospheres, 98(D12), 22903-22914. 1993.

K. Yee. “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media”, IEEE Transactions on Antennas and Propagation, vol. AP-14, no. 3, pp. 302–307, May 1966. 1966.

A. Taflove and S. Hagness. “Computational Electrodynamics: The Finite-Difference Time-Domain Method”. Boston-London: 2005.

A. Elsherbeni and V. Demir. “The finite-difference time-domain method for electromagnetics with MATLAB simulations”. The Institution of Engineering and Technology. 2016.

V. Silva. “Aplicação do método FDTD para avaliação da resposta de linhas de transmissão e aterramentos elétricos frente a descargas atmosféricas”. Dissertação de Mestrado, Universidade federal de minas gerais. Belo Horizonte, Brasil. 2017.

T. Noda and S. Yokoyama. “Thin wire representation in finite difference time domain surge simulation”. IEEE Transactions on Power Delivery, 17(3), 840-847. 2002.

R. Chamié-Filho. Análise de tensões induzidas em linhas de distribuição de baixa tensão frente a uma descarga atmosférica. 2009.

R. Jiménez. “Lightning Induced Voltages on Overhead Lines above Non-Uniform and Non-Homogeneous Ground” Doctoral dissertation, Universidad Nacional de Colombia-Sede Medellín. 2014.

S. Visacro and A. Soares. “HEM: A model for simulation of lightning-related engineering problems”. IEEE Transactions on power delivery, 20(2), 1206-1208. 2005.

J. Herrera. “Nuevas aproximaciones en el cálculo de tensiones inducidas por descargas eléctricas atmosféricas”. Programa de Doctorado en Ingeniería Eléctrica, Facultad de Ingeniería, Departamento de Ingeniería Eléctrica y Electrónica, Universidad Nacional de Colombia, Bogotá, 128 . 2006.

C. McAfee. “Lightning return stroke electromagnetics-time domain evaluation and application” Doctoral dissertation. 2016.

S. Gedney. “Introduction to the finite-difference time-domain (FDTD) method for electromagnetics”. Synthesis Lectures on Computational Electromagnetics, 6(1), 1-250. 2011.

Y. Taniguchi, Y. Baba, N. Nagaoka and A. Ametani. “An improved thin wire representation for FDTD computations”. IEEE Transactions on Antennas and Propagation, 56(10), 3248-3252. 2008.

E. Soto. “Cálculo de campo electromagnético producido por rayo para terreno no plano y su efecto en las tensiones inducidas en líneas de distribución”. Tesis de Maestría, Universidad Nacional de Colombia. Manizales, Colombia. 2010.

D. Sullivan. “Electromagnetic simulation using the FDTD method”. John Wiley & Sons. 2013.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Downloads

Download data is not yet available.