Artificial intelligence and participation in environmental protection, industry, and society
PDF
HTML

Keywords

Environmental protection
development proposals
life cycle

How to Cite

Molina Goyes, K. S., Sandoval Duran, I., Espinosa Ramos, M. A., Cumba Flores, I. A., & Calderon Tuarez, D. A. (2023). Artificial intelligence and participation in environmental protection, industry, and society. Athenea Engineering Sciences Journal, 4(11), 32-37. https://doi.org/10.47460/athenea.v4i11.52

Abstract

Cleaner production is considered one of the essential means for manufacturing companies to achieve sustainable production and improve their competitive advantage. However, implementing the cleaner production strategy faces obstacles, such as the need for comprehensive data and valuable insights that can be used to provide better support in making optimization decisions in product lifecycle management and throughout the cleaner production process. Fortunately, with the extensive use of intelligent sensing devices in cleaner production, a large amount of real-time, multi-source lifecycle big data can now be collected. This paper presents results obtained in terms of proposals for cleaner production in areas such as the use of materials, the use of artificial intelligence, and obstacles to its use within the social and industrial world.

https://doi.org/10.47460/athenea.v4i11.52
PDF
HTML

References

[1] A. Bernal, C. Beltrán and A. Marquez, "Producción Más Limpia: una revisión de aspectos generales.," I3+,pp. 66-85, 2017.
[2] I. Varela-Rojas, "Definición de producción más limpia," Revista Tecnología en marcha, p. 3, 2003.
[3] F. Fajardo, "La producción mas limpia como estrategia ambiental en el marco del desarrollo sostenible," Revista Ingeniería, Matemáticas y Ciencias de la Información, pp. 47-59, 2017.
[4] "DavidPérez," Journal of Cleaner Production, vol. 112, no. 4, pp. 2560-2568, 2016.
[5] P. Ramos-Ramos, D. Guevara-Llerena, L. Sarduy-Pereira and K. Diéguez-Santana, "Producción más limpia y ecoeficiencia en el procesado del cacao: un caso de estudio en Ecuador," Investigación & Desarrollo, vol. 20, no. 1, 2020.
[6] J. Kretschmann, P. Melchers and Goerke-Mallet, "Done for Good Resultados de la investigación posminería,"Technic Hochschule , Lübeck, 2022.
[7] A. Valero, G. Calvo and A. Valero, "Nuevos materiales, nuevas tecnologías y nuevos retos de la transición ecológica," vol. 128, pp. 30-41, 2021.
[8] T. Vilmer, R. Yessica and L. Danny, "Sostenibilidad ambiental en la minería de materiales aluviales: el caso de Rio Negro, Dibulla, Colombia," Información tecnológica, vol. 32, no. 6, 2021.
[9] Environment, "Potential of big data analytics in food-waste reduction businesses.," 2022. [Online]. Available: https://environment.ec.europa.eu/news/potential-big-data-analytics-food-waste-reduction-businesses-2022-11-09_en.
[10] D. Experts, "Big Data utilizada en el medio ambiente," DbaExperts, 2021. [Online]. Available:https://dbaexperts.tech/wp/database/big-data-utilizada-en-el-medio-ambiente/.
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Downloads

Download data is not yet available.