Thermoviscosity mechanism approach in forming fayalitetype ceramic accumulations in particle separators in CFD reactors


relative viscosity
particle collision

How to Cite

Echegarai, E., & Dam, O. G. (2023). Thermoviscosity mechanism approach in forming fayalitetype ceramic accumulations in particle separators in CFD reactors. Athenea Engineering Sciences Journal, 4(14), 22-31.


This article presents the fundamental bases to generate knowledge in forming fayalite-type adhesions. Likewise, to determine the conditions that favor the change of viscosity and consequent conditions of the plasticity of the studied system. The analysis focuses on temperatures between 723K and 1023K and pressures above 5 bar. As a result, the formation of adhesions observed in the production process that contain the materials involved and commonly associated with the collision between the particles are estimated, as well as the effect of the different associated energies that arise from this phenomenon. This mechanism may apply to the study of the adhesions of other ceramic materials under thermoplastic conditions with behavior in similar conditions to the studied ceramic system, using the equation modified to that proposed by Mc Lean for thermoelasticity of metals.


[1] Á. Prada, (2014). Estudio aglomeración lecho fluidizado. 3-52.
[2] D. Fuller (1965). Fenómenos de Sinterización de finos en proceso de reducción directa. Puerto Ordaz
[3] Y. Zhang., Z. And, Ed Z. Guo., (2015). Apparent viscosity measurement of iron particles. 6th International Symposium on High-Temperature Metallurgical Processing, 559-564.
[4] A. Echegaray (2021). Balance de energía en la formación de fayalita sub-eutéctica a altas presiones en separadores de partículas. ORCID 0003-4234-0452.
[5] D. Gaskell (2003). Introduction to the Thermodynamics of Materials. New York: Taylor & Francis 695-696
[6] E. Ringdalen (2016). Softening and melting of SiO2 are essential parameters for reactions with quartz in Si production 43-44.
[7] L. Murty, M, Gold, & A. Ruoff. (1970). High-Temperature Creep Mechanisms in an Iron Alfa and Other Metals. 41(12), 4917-4937.
[8] L. Chica, O. Bustamante and A. Barrientos (2013) “Disipación de energía mecánica en la descarga de un hidrociclón: Nueva estrategia de modelo” revista Dyna año 80 Nro. 181 p.p 136-145 Medellín.
[9] D. McLean. (1966). The Physics of high-temperature creep in metals. Science, 1-33.
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.


Download data is not yet available.