Use of artificial intelligence in medical classification for hemiplegic patients
PDF
HTML

Keywords

artificial intelligence
hemiplegia
clinical studies
SOM
medical treatment

How to Cite

Vazquez-Lebron, N. P., Valera-Marquez, J., & Bravo-Perez, R. (2024). Use of artificial intelligence in medical classification for hemiplegic patients. Athenea Engineering Sciences Journal, 5(17), 26-34. https://doi.org/10.47460/athenea.v5i17.80

Abstract

This study explores a machine learning-based neural network system that uses MATLAB to classify hemiplegia, a disease that causes paralysis on one side of the body. An algorithm was developed to categorize patients into four established types of hemiplegia. Techniques such as Principal Component Analysis (PCA) and Self-Organizing Maps (SOMs) were used for dimensionality reduction and data clustering, while a Convolutional Neural Network (CNN) refined the classification. The algorithm identified distinct subgroups within the categories, indicating a more complex data structure. Despite promising results to aid clinical diagnosis, further exploration of these subcategories is needed.

https://doi.org/10.47460/athenea.v5i17.80
PDF
HTML

References

[1] U. R. Padilla-Liendo, "Análisis cinético de indicadores difusos en tobillo y rodilla para clasificar la marcha hemipléjica espástica utilizando diagrama de flujo," *Avances en Biomedicina*, vol. 5, no. 2, pp. 66-75, 2016.
[2] D. B. Medina Vargas, “El entrenamiento robótico en la funcionalidad del miembro inferior en pacientes hemipléjicos del IESS de la ciudad de Ambato”, Bachelor's thesis, Universidad Técnica de Ambato-Facultad de Ciencias de la Salud-Carrera de Terapia Física, 2015.
[3] U. R. Padilla Liendo, "Clasificación de la marcha hemipléjica utilizando las características difusas de los indicadores cinemáticos en tobillo, rodilla y cadera," *Interciencia*, vol. 41, no. 9, pp. 633-638, 2016.
[4] A. Yardimci, "Fuzzy logic-based gait classification for hemiplegic patients," in *Advances in Intelligent Data Analysis VII: 7th International Symposium on Intelligent Data Analysis, IDA 2007, Ljubljana, Slovenia, September 6-8, 2007. Proceedings 7*, Berlin Heidelberg: Springer, 2007, pp. 344-354.
[5] J. Riad, Y. Haglund-Akerlind, and F. Miller, "Classification of spastic hemiplegic cerebral palsy in children," *Journal of Pediatric Orthopaedics*, vol. 27, no. 7, pp. 758-764, 2007.
[6] A. J. Salazar, O. C. De Castro, and R. J. Bravo, "Novel approach for spastic hemiplegia classification through the use of support vector machines," in *The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society*, vol. 1, pp. 466-469, Sept. 2004.
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Downloads

Download data is not yet available.