Avances en tecnologías de drones militares
PDF
HTML

Keywords

military drone
autonomous vehicle
payload capacity
maneuverability

How to Cite

Balladares, P., Bustos-Estrella, A., Albuja, G., & Alarcón, M. (2024). Avances en tecnologías de drones militares. Athenea Engineering Sciences Journal, 5(18), 7-18. https://doi.org/10.47460/athenea.v5i18.81

Abstract

In recent years, military drone technologies have undergone accelerated development driven by the need to improve efficiency and precision in defense and security operations. This paper describes the most recent advances in technologies that contribute to the better performance of drones in the execution of their military tasks, addressing the participation of artificial intelligence systems, autonomy capabilities, and improvements in sensors for drones in tactical and strategic missions. Technological advances have driven a significant increase in operational capability and reduced risks for military personnel, thanks to drone technologies with greater autonomy and accuracy. Advances in this area are redefining the landscape of modern military activity and pose new challenges regarding ethical regulations and autonomous arms control, suggesting the need for a robust and up-to-date international regulatory framework.

https://doi.org/10.47460/athenea.v5i18.81
PDF
HTML

References

[1] H. Han, «Analysis of the Status of Basic Industries in Military Drone», The journal of the convergence on culture technology, vol. 6, n.o 4, pp. 493-498, nov. 2020, doi: 10.17703/JCCT.2020.6.4.493.
[2] «The Future of Military Drones: Advancements and Innovations - Defence Agenda». Accedido: 4 de septiembre de 2024. [En línea]. Disponible en: https://defenceagenda.com/the-future-of-military-drones/
[3] R. Steen, N. Håheim‐Saers, y G. Aukland, «Military unmanned aerial vehicle operations through the lens of a high‐reliability system: Challenges and opportunities», Risk Hazard & Crisis Pub Pol, vol. 15, n.o 3, pp. 347-373, sep. 2024, doi: 10.1002/rhc3.12279.




[4] I. Marzaki, A. A. Supriyadi, y S. Arief, «Leveraging drone technology for advancements in photogrammetry, remote sensing, and military intelligence: a review», RSTDE, vol. 1, n.o 1, pp. 1-9, feb. 2024, doi: 10.61511/rstde.v1i1.2024.840.
[5] M. J. Guitton, «Fighting the Locusts: Implementing Military Countermeasures Against Drones and Drone Swarms», Scandinavian Journal of Military Studies, vol. 4, n.o 1, pp. 26-36, ene. 2021, doi: 10.31374/sjms.53.
[6] A. Jackman, «‘Manning’ the ‘unmanned’: Reapproaching the military drone through learning the/to drone», Political Geography, vol. 104, p. 102894, jun. 2023, doi: 10.1016/j.polgeo.2023.102894.
[7] A. Jackman, «Drone sensing volumes», Geographical Journal, vol. 189, n.o 3, pp. 501-513, sep. 2023, doi: 10.1111/geoj.12517.
[8] P. Burt, «Out of Sight, Out of Mind? Ethical Issues Relating to the Use of Autonomous Armed Drones in Promotional Videos», Journal of War & Culture Studies, vol. 15, n.o 4, pp. 388-407, oct. 2022, doi: 10.1080/17526272.2022.2119662.
[9] J. D. Schnepf, «Military Technologies and Human Labor», American Literature, vol. 95, n.o 2, pp. 351-363, jun. 2023, doi: 10.1215/00029831-10575134.
[10] «Drone Survival Guide». Accedido: 18 de noviembre de 2024. [En línea]. Disponible en: http://www.dronesurvivalguide.org/
[11] D. Caballero-Martin, J. M. Lopez-Guede, J. Estevez, y M. Graña, «Artificial Intelligence Applied to Drone Control: A State of the Art», Drones, vol. 8, n.o 7, p. 296, jul. 2024, doi: 10.3390/drones8070296.
[12] I. Jeelani y M. Gheisari, «Safety Challenges of Human-Drone Interactions on Construction Jobsites», en Automation and Robotics in the Architecture, Engineering, and Construction Industry, H. Jebelli, M. Habibnezhad, S. Shayesteh, S. Asadi, y S. Lee, Eds., Cham: Springer International Publishing, 2022, pp. 143-164. doi: 10.1007/978-3-030-77163-8_7.
[13] Z. Xiaoning, «Analysis of military application of UAV swarm technology», en 2020 3rd International Conference on Unmanned Systems (ICUS), Harbin, China: IEEE, nov. 2020, pp. 1200-1204. doi: 10.1109/ICUS50048.2020.9274974.
[14] G. S. Kim, S. Lee, T. Woo, y S. Park, «Cooperative Reinforcement Learning for Military Drones over Large-Scale Battlefields», IEEE Trans. Intell. Veh., pp. 1-11, 2024, doi: 10.1109/TIV.2024.3472213.
[15] H. Wang, Q. Shen, Z. Deng, Y. Guo, y S. Zhang, «A Joint Detection Method for Military Targets and Their Key Parts for UAV Images», IEEE Trans. Instrum. Meas., vol. 73, pp. 1-15, 2024, doi: 10.1109/TIM.2024.3460951.
[16] C. Oliveros-Aya, «Artificial intelligence in drones and robots for war purposes: a biolegal problem», JANUS NET, vol. 14, n.o 2, nov. 2023, doi: 10.26619/1647-7251.14.2.5.
[17] A. E. Omolara, M. Alawida, y O. I. Abiodun, «Drone cybersecurity issues, solutions, trend insights and future perspectives: a survey», Neural Comput & Applic, vol. 35, n.o 31, pp. 23063-23101, nov. 2023, doi: 10.1007/s00521-023-08857-7.
[18] W. F. Lawless, «Risk determination vs risk perception: From hate speech, an erroneous drone attack, and military nuclear wastes to human-machine autonomy», en Putting AI in the Critical Loop, Elsevier, 2024, pp. 21-40. doi: 10.1016/B978-0-443-15988-6.00001-7.
[19] M. Ünsaldı, «The Future of Military Drones: Advancements and Innovations», Defence Agenda. Accedido: 23 de noviembre de 2024. [En línea]. Disponible en: https://defenceagenda.com/the-future-of-military-drones/.
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Downloads

Download data is not yet available.