Diagnosis of low insulation fault in the starting transient of squirrel cage rotor induction motors using wavelet analysis
PDF
HTML

Keywords

wavelet
daubechies
isolation

How to Cite

Marot Guevara, A. A., & Velásquez, S. (2024). Diagnosis of low insulation fault in the starting transient of squirrel cage rotor induction motors using wavelet analysis. Athenea Engineering Sciences Journal, 5(18), 19-32. https://doi.org/10.47460/athenea.v5i18.82

Abstract

The objective of this work was to diagnose faults in squirrel-cage induction motors during the startup transient, by analyzing the stator current signal. To achieve this, low- and medium-voltage motors were modeled in Simulink using MATLAB. Previously, the fault due to low insulation was diagnosed through a static test. It was demonstrated that, during the startup transient, the low insulation fault manifests through a Daubechies wavelet analysis at level 8 of the current signal. The fault was identified in the detail levels 1, 2, 5, 6, 7, and 8, for both low-voltage and medium-voltage motors.

https://doi.org/10.47460/athenea.v5i18.82
PDF
HTML

References

[1] A. Almounajjed, A. Sahoo y M. Kumar, «Condition monitoring and fault diagnosis of induction motor: An experimental analysis,» de In 2021 7th Int. Conf. on Electrical . In 2021 7th Int. Conf. on Electrical, 2021.
[2] X. Liang, M. Z. Ali y H. Zhang, «Induction Motors Fault Diagnosis Using Finite Element Method: A Review,» in IEEE Transactions on Industry Applications, vol. 56, nº 2, pp. 1205-1217, 2020.
[3] P. Zitha y B. A. Thango, «On the Study of Induction Motor Fault Identification using Support Vector Machine Algorithms,» de 2023 SAUPEC Conference, Johannesburg, South Africa, 2023.
[4] A. Sharma, L. Mathew y S. Chatterji, «Analysis of Broken Rotor bar Fault Diagnosis for Induction Motor. In Proceedings of the,» de IEEE International Conference on Innovations in Control, Communication and Information Systems (ICICCI),, Greater Noida, 2017.
[5] M. R. Mehrjou, N. Mariun, M. H. Marhaban y N. Misron, «Rotor fault condition monitoring techniques for squirrel-cage induction machine—A review,» Mechanical Systems and Signal Processing, vol. 25, nº 8, pp. 2827-2848, 2011.
[6] M. Z. Ali, S. M. N. S. K, X. Liang y H. Y. Zhang and T, «Machine Learning-Based Fault Diagnosis for Single- and Multi-Faults in Induction Motors Using Measured Stator Currents and Vibration Signals,» in IEEE Transactions on Industry Applications, vol. 5, nº 3, pp. 2378-2391, 2019.
[7] S. Lee, J. Yang, K. Younsi y R. Bharadwaj, «An On-line Groundwall and Phase to Phase Insulation Quality Assessment Technique for AC Machine Stator Windings,» IEEE Transactions on Industry Applications, vol. 42, p. 946–957, 2006.



[8] Y. Wang, L. Yang, J. Xiang y e. al, «A hybrid approach to fault diagnosis of roller bearings under variable speed conditions,» Measurement Science and Technology, vol. 28, nº 12, 2017.
[9] G. H. Bazan, P. R. Scalassara, W. Endo y e. al, «Stator short-circuit diagnosis in induction motors using mutual information and intelligent systems,» IEEE Transactions on Industrial Electronics, vol. 66, nº 4, pp. 3237-3246, 2018.
[10] A.S.Guedes y S.M.Silva, «Insulation Protection and Online Stress Agent Identification for Electric Machines using Artificial Intelligence,» ET Electric Power Applications, vol. 13, nº 4, pp. 559-570 , 2019.
[11] G. Mathew, «Fault Detection in an Induction Motor Drive Using Discrete Wavelet Packet Transform,» IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE), vol. 12, nº 2, pp. 1-6, 2017.
[12] N. Mohan, Advanced Electric Drives: Analysis, Control and Modeling Using Simulink. Minneapolis, Minneapolis: MNPERE, 2001.
[13] J. Antonino-Daviu, M.-F. J. Riera-Guasp, F. Martínez-Giménez y A. Peris, «Application and optimization of the discrete wavelet transform for the detection of broken rotor bars in induction machines,» Applied and Computational Harmonic Analysis, vol. 21, nº 2, pp. 268-279, 2006.
[14] J. Cusidó y J. Romeral, «Transient Analysis and Motor Fault Detection using the Wavelet Transform,» MCIA Group, Technical University of Catalonia, pp. 43-60, 2011.
[15] J. Walker, CRC press, 2008.
[16] R. Gopinath y G. H.ta, Introduction to wavelets and wavelet transforms: a primer, Nueva Jersey: Prentice-Hall, 1997.
[17] M. Samiullah, H. Ali y A. A. Shehryar Zahoor, «Fault Diagnosis on Induction Motor using Machine Learning and Signal Processing,» School of Electrical Engineering and Computer Science, (SEECS), National University of Sciences and Technology, pp. 1-6, 2024.
[18] K. Younsi, P. Neti, M. Shah, J. Y. Zhou, J. Krahn y K. Weeber, «On-line Capacitance and Dissipation Factor Monitoring of AC Stator Insulation,» IEEE Transactions on Dielectrics and Electrical Insulation , vol. 17, nº 5, pp. 1441-1451, 2010.
[19] P. Nussbaumer, M. A. Vogelsberger y T. M. Wolbank, «Induction Machine Insulation Health State Monitoring Based on Online Switching Transient Exploitation,» IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, vol. 62, nº 3, pp. 1835- 1845, 2015.
[20] I. o. E. a. E. E. (IEEE), IEEE 493-2020: Recommended Practice for the Design of Relays for Electric Power Systems., 2020.
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Downloads

Download data is not yet available.