Abstract
Emerging technologies enhance soldiers' capabilities, improving safety, accuracy, and efficiency. Exoskeletons, AI, AR, biotechnology, nanotechnology, drones, smart materials, and communication technologies enable the optimization of strategies, decisions, resistance, and situational awareness, being key in modern armed forces. This review paper synthesizes the most relevant advances, their key technologies and the impacts they have on the efficiency of soldiers' strategies during their operations. A systematic PRISMA review was conducted across the SCOPUS, Web of Science, Taylor & Francis, PubMed, and ProQuest databases, identifying review articles on these advances, including practical cases of implementation in military forces in Latin America and Europe. The results show more recent advances such as drone swarms, biometrics for monitoring troops, and high-precision laser weapons. Despite challenges such as costs and technical training, these technologies transform defense, improving its effectiveness and security, driving greater capabilities, and providing competitive advantages in adverse events.
References
V. Mai et al., «The Role of Robotics in Achieving the United Nations Sustainable Development Goals—The Experts’ Meeting at the 2021 IEEE/RSJ IROS Workshop [Industry Activities]», IEEE Robot. Automat. Mag., vol. 29, n.o 1, pp. 92-107, mar. 2022, doi: 10.1109/MRA.2022.3143409.
A. A. Espitia Cubillos, J. A. Agudelo Calderón, y Ó. Y. Buitrago Suescún, «Innovaciones tecnológicas en las fuerzas militares de los países del mundo», Rev. Cient. Gen. José María Córdova, vol. 18, n.o 29, pp. 213-235, ene. 2020, doi: 10.21830/19006586.537.
G. Xiong, X. Ma, W. Li, J. Cao, J. Zhong, y Y. Su, «Brain Computer Interface Technology for Future Battlefield», 2023, arXiv. doi: 10.48550/ARXIV.2312.07818.
G. S. Sawicki, O. N. Beck, I. Kang, y A. J. Young, «The exoskeleton expansion: improving walking and running economy», J NeuroEngineering Rehabil, vol. 17, n.o 1, p. 25, dic. 2020, doi: 10.1186/s12984-020-00663-9.
A. A. Espitia Cubillos, J. A. Agudelo Calderón, y Ó. Y. Buitrago Suescún, «Innovaciones tecnológicas en las fuerzas militares de los países del mundo», Rev. Cient. Gen. José María Córdova, vol. 18, n.o 29, pp. 213-235, ene. 2020, doi: 10.21830/19006586.537.
J. Liu, S. Chen, F. Gao, Y. Long, Z. Wang, y B. Xi, «Development And Application of Robotics Technologies in Future Intelligent Soldier Squad», en 2023 35th Chinese Control and Decision Conference (CCDC), Yichang, China: IEEE, may 2023, pp. 845-850. doi: 10.1109/CCDC58219.2023.10326681.
J. K. Proud et al., «Exoskeleton Application to Military Manual Handling Tasks», Hum Factors, vol. 64, n.o 3, pp. 527-554, may 2022, doi: 10.1177/0018720820957467.
A. J. Echevarria, «Putin’s Invasion of Ukraine in 2022: Implications for Strategic Studies», The US Army War College Quarterly: Parameters, vol. 52, n.o 2, pp. 21-34, may 2022, doi: 10.55540/0031-1723.3150.
Y. Yoon y I.-J. Cho, «A review of human augmentation and individual combat capability: focusing on MEMS-based neurotechnology», Micro and Nano Syst Lett, vol. 12, n.o 1, p. 17, sep. 2024, doi: 10.1186/s40486-024-00205-1.
G. Xiong, X. Ma, W. Li, J. Cao, J. Zhong, y Y. Su, «Brain Computer Interface Technology for Future Battlefield», 2023, arXiv. doi: 10.48550/ARXIV.2312.07818.
R. A. Khalil, M. Haris, y N. Saeed, «Beyond Line of Sight Defense Communication Systems: Recent Advances and Future Challenges», 2023, arXiv. doi: 10.48550/ARXIV.2312.06491.
M. Miller Koop et al., «The Microsoft HoloLens 2 Provides Accurate Biomechanical Measures of Performance During Military-Relevant Activities in Healthy Adults», Military Medicine, vol. 188, n.o Supplement_6, pp. 92-101, nov. 2023, doi: 10.1093/milmed/usad041.
A. Yadav y K. Yadav, «Transforming healthcare and fitness with AI powered next-generation smart clothing», Discov. Electrochem., vol. 2, n.o 1, p. 2, mar. 2025, doi: 10.1007/s44373-025-00015-z.
Y. Chen, X. Jin, N. Weng, W. Zhu, Q. Liu, y J. Chen, «Simultaneous Extraction of Planetary Boundary-Layer Height and Aerosol Optical Properties from Coherent Doppler Wind Lidar», Sensors, vol. 22, n.o 9, p. 3412, abr. 2022, doi: 10.3390/s22093412.
D. Bovens, E. Van Baarle, K. Ziesemer, y B. Molewijk, «The ethical dimension of personal health monitoring in the armed forces: a scoping review», BMC Med Ethics, vol. 25, n.o 1, p. 88, ago. 2024, doi: 10.1186/s12910-024-01086-0.
S. Bhattacharyya, D. Valeriani, C. Cinel, L. Citi, y R. Poli, «Anytime collaborative brain–computer interfaces for enhancing perceptual group decision-making», Sci Rep, vol. 11, n.o 1, p. 17008, ago. 2021, doi: 10.1038/s41598-021-96434-0.
X.-Y. Liu et al., «Recent applications of EEG-based brain-computer-interface in the medical field», Military Med Res, vol. 12, n.o 1, p. 14, mar. 2025, doi: 10.1186/s40779-025-00598-z.
X. Sun y B. Ye, «The functional differentiation of brain–computer interfaces (BCIs) and its ethical implications», Humanit Soc Sci Commun, vol. 10, n.o 1, p. 878, nov. 2023, doi: 10.1057/s41599-023-02419-x.
N. S. Jecker y A. Ko, «The Unique and Practical Advantages of Applying A Capability Approach to Brain Computer Interface», Philos. Technol., vol. 35, n.o 4, p. 101, dic. 2022, doi: 10.1007/s13347-022-00597-1.
M. S. Sarif Ullah Patwary, «Smart Textiles and Nanotechnology: A General Overview», J Textile Sci Eng, vol. 05, n.o 01, 2015, doi: 10.4172/2165-8064.1000181.
P. Kozak y M. Vrsecka, «The Use of Drones in Military Conflict», en 2023 International Conference on Military Technologies (ICMT), Brno, Czech Republic: IEEE, may 2023, pp. 1-6. doi: 10.1109/ICMT58149.2023.10171263.
S. Affan Ahmed, M. Mohsin, y S. M. Zubair Ali, «Survey and technological analysis of laser and its defense applications», Defence Technology, vol. 17, n.o 2, pp. 583-592, abr. 2021, doi: 10.1016/j.dt.2020.02.012.

This work is licensed under a Creative Commons Attribution 4.0 International License.