Abstract
This article examines the impact of artificial intelligence on administrative decision-making in emerging enterprises, employing a quantitative and mathematical approach supported by regression models, Monte Carlo simulation, and dynamic systems. The findings indicate that process automation and predictive analytics are the most influential factors in administrative efficiency, while organizational acceptance significantly strengthens their effect. The results suggest that AI must be integrated into a broader strategic architecture that combines engineering, ethics, and sustainability to maximize its effectiveness.
References
Á. Szukits and P. Móricz, “Towards data-driven decision making: the role of analytical culture and centralization efforts,” Review of Managerial Science, vol. 18, no. 10, pp. 2849–2887, 2024.
S. S. Nudurupati, S. Tebboune, P. Garengo, R. Daley, and J. Hardman, “Performance measurement in data intensive organisations: resources and capabilities for decision-making process,” Production Planning & Control, vol. 35, no. 4, pp. 373–393, 2024.
K. Bahamazava, “AI-driven scenarios for urban mobility: Quantifying the role of ODE models and scenario planning in reducing traffic congestion,” Transport Economics and Management, vol. 3, pp. 92–103, 2025.
B. Mallala, A. I. U. Ahmed, S. V. Pamidi, M. O. Faruque, and R. Reddy, “Forecasting global sustainable energy from renewable sources using random forest algorithm,” Results in Engineering, vol. 25, 103789, 2025.
U. Nweje and M. Taiwo, “Leveraging Artificial Intelligence for predictive supply chain management,” International Journal of Science and Research Archive, vol. 14, no. 1, pp. 230–250, 2025.
C. Barroso Camiade and E. M. Pérez Castrejón, “Desafíos éticos y legales en el uso de la inteligencia artificial,” Sintaxis, no. 14, pp. 102–118, 2025.
N. S. L. Tafur, M. J. C. Ramos, B. Y. J. Giraud, and R. D. H. Calero, “IA y Big Data: Optimización de la estrategia financiera,” SAPIENS International Multidisciplinary Journal, vol. 1, no. 3, pp. 214–230, 2024.
L. T. M. Ugalde et al., “Modelos de negocios dinámicos basados en inteligencia de mercados,” Ciencia y Desarrollo, vol. 28, no. 1, pp. 605–612, 2025.
A. D. T. Rivera and L. A. Díaz-Torres, “Aplicaciones de la Inteligencia Artificial en los Modelos de Negocios Digitales,” Recherches en Sciences de Gestion, vol. 141, no. 6, pp. 67–88, 2020.
R. R. Autrán, “Sesgos y discriminaciones sociales de los algoritmos en IA,” Entretextos, vol. 15, no. 39, p. 4, 2023.
M. El Khatib and A. Al Falasi, “Effects of Artificial Intelligence on Decision Making in Project Management,” American Journal of Industrial and Business Management, vol. 11, pp. 251–260, 2021.
F. A. Csaszar, H. Ketkar, and H. Kim, “Artificial Intelligence and Strategic Decision-Making: Evidence from Entrepreneurs and Investors,” Strategic Management Science, 2024.
F. M. V. Flores, “La inteligencia artificial como herramienta para la predicción de escenarios económicos,” Revista Pulso Científico, vol. 2, no. 1, pp. 1–15, 2024.
P. G. Koliou et al., “Startup Sustainability Forecasting with Artificial Intelligence,” Applied Sciences, vol. 14, no. 19, p. 8925, 2024.
O. V. Kubatko, S. Ch. Ozims, and V. I. Voronenko, “Influence of artificial intelligence on business decision-making,” Mechanism of Economic Regulation, vol. 103, no. 3, 2024.
C. Argyris and D. A. Schön, Organizational Learning: A Theory of Action Perspective, vol. 1, Addison-Wesley, 1978.
A. Uzialko, “How Artificial Intelligence Will Transform Businesses,” Business News Daily, 27 Aug. 2024.

This work is licensed under a Creative Commons Attribution 4.0 International License.
