Abstract
The development of the intelligent system for labor conflict management was carried out with the aim of improving the identification, prevention, and resolution of conflicts in organizational environments through the use of advanced artificial intelligence tools and social network analysis. The system was designed to detect conflict patterns, generate automated solutions, and dynamically adjust its responses using machine learning techniques, natural language processing, and graph theory analysis. The methodology included a detailed analysis of the organizational structure, the application of a survey to assess perceptions and workplace dynamics, and the implementation of a continuous feedback system to enhance the system’s performance. Network analysis enabled the identification of key employees with high social influence and the detection of critical points within the organizational structure, while sentiment analysis and automated responses strengthened the system’s ability to resolve conflicts efficiently. The results showed a significant improvement in conflict detection accuracy (from 60% to 90%), a 30% reduction in the number of reported conflicts, and an increase in employee satisfaction (from 60% to 88%). The improvement in the work environment and the system’s ability to adapt to different organizational settings confirmed the effectiveness and scalability of the implemented solution.
References
[2] G. Rzevski, P. Skobelev, y A. Zhilyaev, "Emergent intelligence in smart ecosystems: conflicts resolution by reaching consensus in resource management," Mathematics, vol. 10, no. 11, pp. 1923, 2022.
[3] K. P. Sycara, "Machine learning for intelligent support of conflict resolution," Decision Support Systems, vol. 10, no. 2, pp. 121–136, 1993.
[4] R. Arunthavanathan, Z. Sajid, F. Khan, y E. Pistikopoulos, "Artificial intelligence–Human intelligence conflict and its impact on process system safety," Digital Chemical Engineering, vol. 11, pp. 100151, 2024.
[5] W. R. Scott, "Reflections on a half-century of organizational sociology," Annu. Rev. Sociol., vol. 30, no. 1, pp. 1–21, 2004.
[6] C. Morrill y G. A. Fine, "Ethnographic contributions to organizational sociology," Sociological Methods & Research, vol. 25, no. 4, pp. 424–451, 1997.
[7] C. Consuelo-Bravo, I. Sarmentero-Bon, O. Gómez-Figueroa, y O. Falcón, "Procedimiento para el estudio del comportamiento organizacional," Ingeniería Industrial, vol. 39, no. 1, pp. 92–100, 2018.
[8] A. Omar y A. F. Urteaga, "El impacto de la cultura nacional sobre la cultura organizacional," Universitas Psychologica, vol. 9, no. 1, pp. 79–92, 2010.
[9] A. Stefanescu, L. Stefanescu, y I. L. Ciora, "Intelligent tools and techniques for modern management," Chinese Business Review, vol. 8, no. 2, pp. 46, 2009.
[10] T. N. Litvinova, N. B. Abdusalomova, T. A. Dugina, y I. V. Denisov, "Change management based on smart technologies for sustainable business development," Global Journal of Flexible Systems Management, vol. 25, Suppl. 1, pp. 17–30, 2024.
[11] M. Žilka, Z. T. Kalender, J. Lhota, V. Kalina, y R. Pinto, "Tools to support managerial decision-building competencies in data driven decision making in manufacturing SMEs," Procedia Computer Science, vol. 232, pp. 416–425, 2024.
[12] S. Sifuentes Domínguez, D. L. A. S. Dra. L. Avelar Sosa, y J. M. Mejía Muñoz, "Diseño de un sistema inteligente de soporte a la toma de decisiones para la cadena de suministro: 7CP24-15," Mem. Científ. y Tecnol., vol. 3, no. 2, pp. 29–30, jun. 2024.
[13] A. J. Simón Cuevas et al., "Contribuciones al análisis de sentimientos en opiniones de usuario aplicando técnicas y algoritmos de inteligencia artificial," An. Acad. Cienc. Cuba, vol. 14, no. 3, pp. e1674, jul.–sep. 2024. [En línea]. Disponible en: https://revistaccuba.sld.cu/index.php/revacc/article/view/1674.
[14] S. E. L. Villanueva, "Impacto de la inteligencia artificial en el proceso laboral peruano," Laborem, vol. 23, no. 30, pp. 251–279, 2024.
[15] S. P. Grachev et al., "Methods and tools for developing intelligent systems for solving complex real-time adaptive resource management problems," Automation and Remote Control, vol. 82, pp. 1857–1885, 2021.
[16] P. Simon, Reimagining collaboration: Slack, Microsoft Teams, Zoom, and the post-COVID world of work. Racket Publishing, 2021.
[17] T. Omelianenko y D. Ilienkov, "Modern digital tools of operational management," Collection of Scientific Papers "Scientific Notes", no. 34(1), pp. 137–150, 2024.
[18] A. P. María Elena, L. C. Alicia Celina, M. Cantú Karina, y G. Sánchez América, "Herramientas de colaboración en la industria 4.0," Revista Daena: International Journal of Good Conscience, vol. 19, no. 2, 2024.
[19] L. E. Romero Paredes, "Ejecución de algoritmos de inteligencia artificial en sistemas de tiempo real," Master's thesis, Universitat Politècnica de Catalunya, 2025.
[20] F. C. García, A. G. Castañeda, y A. C. Núñez, "La inteligencia artificial como herramienta para las pequeñas y medianas empresas," Universidad & Ciencia, vol. 13, Especial CIVITEC, pp. 44–54, 2024.
[21] S. C. Riascos-Erazo y A. Aguilera-Castro, "Innovación, madurez de la gestión del conocimiento e Industria 4.0: mirada en las pymes colombianas," Journal of Technology Management & Innovation, vol. 19, no. 1, pp. 29–39, 2024.

This work is licensed under a Creative Commons Attribution 4.0 International License.