Mechanism of iron oxide swelling in metallization processes



How to Cite

Azocar, L., & Dam, O. (2022). Mechanism of iron oxide swelling in metallization processes. Athenea Engineering Sciences Journal, 3(9), 7-14.


The results of stresses caused by desorption of dissolved nitrogen atoms in point defects of allotropic phases of metallic iron obtained by solid-state reduction processes are shown. In the ferrite and austenite phases, the amounts of dissolved nitrogen and vacuums were calculated and the expansion of the surface mechanism of nitrogen adsorption was proposed, with the absorption-desorption to determine the number of its atoms and molecules adjusted to the space of the vacuums located inside the phases and to obtain the pressures and efforts generated by the confined gas. The calculated values of the efforts for the
desorption of three molecules of nitrogen in a vacuum of the ferrite and austenite crystalline network were 621.2 and 727.6 Kgf/mm2, and when compared with the known values of their tensile strength (breakage) of  28 and 105 Kgf/mm2, they were 22 and 7 times higher respectively, favoring their swelling and catastrophic cracking.


[1]H. Wang and H. Y. Sohn. “Effects of Reducing Gas on Swelling and Iron Whisker Formation during the Reduction of Iron Oxide Compact”. 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, steel research int. 83, 2012, No. 9999, pp. 1-7.
[2]G. O. Dam. “The effect of nitrogen of swelling iron ore”. Thesis Doctoral Imperial College, London. 1983.
[3]G. O. Dam, “Influence of nitrogen on the swelling during reduction of Venezuelan dense hematite ore”. Thesis Magister. Imperial College. London. 1977.
[4]A. A. EL-Geassy, M. l. Nasr and M. M. Hessie, “Effect of reducing gas on of volume change during reduction of oxides compact”. ISIJ International, Vol. 36, Nro 6. 1996, pp. 640-649.
[5] B. H. Mahan. University Chemistry. 3°ed. Addison-Wesley Publishing Company. Philippines. 1975.
[6]C. M. Marcos. Notas: Premios Nobel 2007: Química y Física. Universidad de Sevilla, pp. 333-342.
[7] H. J Grabke. “Conclusions on the Mechanism of Ammonia-Synthesis from the Kinetics of Nitrogenation and Denitrogenation of Iron”. Zeitschrift für Physikalische Chemie Neue Folge, Bd. 100, S. 185—200 (1976) © by Akademische Verlagsgesellschaft, Wiesbaden 1976, pp. 185-200.
[8] H. J Grabke and G Hortz. “Kinetics and mechanisms of gas metal interactions”. Ann. Rev. Mater. Sci, 1977, pp. 155-178.
[9]S. Filippov. The theory of metallurgical processes. Moscow: MIR Publishers, 1975.
[10] W. Lankford, N. Samways; R. Craven. The making shaping and treating of steel. 10° ed., Pittsburgh: Herbick & Held, 1985.
[11]W. D. Calister, Jr. Introducción a la ciencia e ingeniería de materiales. 2° ed., México. Limusa Wiley, 2009.
[12]D. R. Askeland. Ciencia e ingeniería de los materiales. 3° ed., México. International Thomson Editores.1998.
[13]J. F. Shackelford. Ciencia de los materiales para ingenieros. 3° ed., México. Prentice Hall Hispanoamericana. S. A. 1995.
[14]V. Wylen. Fundamentos de termodinámica. 2°ed, México. Limusa Wiley. 2012.
[15] S. H. Avner. Introducción a la metalurgia física. Madrid, España. Talleres Gráficos de Ediciones Castilla, S. A. 1966.
[16]M. I. Baskes and J. H. Holbrook. “Volume changes in copper due to point defects”. Physical Review B, Vol. 17, Nro. 2. 1978, pp.422-426.
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.


Download data is not yet available.