Mathematical model of the convective behavior of climate variability applied to a cubic Hadley cell


soil-atmosphere interaction
Hadley cell
climate variability

How to Cite

Giron, M. (2023). Mathematical model of the convective behavior of climate variability applied to a cubic Hadley cell. Athenea Engineering Sciences Journal, 4(14), 32-44.


A mathematical model is presented to assess the impact of climatic anomalies and convective behavior on climatic variability at the Earth's surface, focusing on soil-atmosphere interaction. This model is applied within a control volume covering the Hadley cell, allowing for the verification of convective coupling and prediction of the effects of the studied climatic variation. The mathematical analysis delves into the soil-atmosphere interaction within the control volume, quantifying variations in water evaporation levels in bodies of water and soil, water vapor content in clouds, adiabatic gradient in the atmosphere, relative humidity, and condensation, taking into account average solar radiation. This developed model is a robust foundation for reproducing convective climate effects, pinpointing coupling forces, and validating models in local climate studies.


[1] P. Eagleson, "Climate, soil, and vegetation: 1. Introduction to water balance dynamics.," Water Resources Research, vol. 14, no. 5, pp. 705-712., (1978b).
[2] J. Shukla and Y. Mintz, "Influence of land-surface evapotranspiration on the earth's climate.," Science, vol. 215, no. Crossref, Google Scholar, p. 1498–1501, 1982.
[3] D. Entekhabi, I. Rodriguez-Iturbe, and Bras, "Variability in large-scale water balance with land surface-atmosphere interaction. " J. Climate, no. 5, p. 798–813, 1992.
[4] R. D. Koster, P. A. Dirmeyer and A. N. Hahmann, "Comparing the degree of land–atmosphere interaction in four atmospheric general circulation models," J. Hydrometeor, no. 3, p. 363–375, 2002.
[5] A. Numaguti, "Dynamics and energy balance of the Hadley circulation and the tropical precipitation zones: Significance of the distribution of evaporation.," J. Atmos. Sci, vol. 50, no. Link, Google Scholar, p. 1874–1887, 1993.
[6] P. C. D. Milly and A. B. Shmakin, "Global modeling of land water and energy balances. Part I: The Land Dynamics (LaD) model," J. Hydrometeor, vol. 3, no. Link, Google Scholar, p. 283–299, 2002.
[7] P. M. Cox, R. A. Betts, C. B. Bunton, R. L. H. Essery, P. R. Rowntree, and J. Smith, "The impact of new land surface physics on the GCM simulation of climate and climate sensitivity," Climate Dyn, vol. 15, no. Crossref, Google Scholar, p. 183–203, 1999.
[8] V. D. Pope, M. L. Gallani, P. R. Rowntree and R. A. Stratton, "The impact of new physical parameterizations in the Hadley Centre climate model: HadAM3," Climate Dyn, vol. 16, no. Crossref, Google Scholar, p. 123–146, 2000.
[9] J. Polcher and Coauthors, "A proposal for a general interface between land surface schemes and general circulation models," Global Planet. Change, vol. 19, p. 261–276, 1998.
[10] J. Bjerknes, "A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature.," Tellus, vol. 18, pp. 820-829, 1966.
[11] D. R. Pozo, D. Martínez and C. Madeyvis, "Simulación numérica tridimensional de una celda convectiva simple en condiciones tropicales utilizando el modelo ARPS," Revista Cubana de Meteorología, vol. 8, no. 1, 2001.
[12] H. Romero , P. Smith, M. Mendonça and M. & Méndez, "Macro y mesoclimas del altiplano andino y desierto de Atacama: desafíos y estrategias de adaptación social ante su variabilidad."," Revista de Geografía Norte Grande, no. 55, pp. 19-41, 2013.
[13] A. h. Oort and J. J. y Yienger, "Variabilidad interanual observada en la circulación de Hadley y su conexión con ENOS," in Diario del Clima, 1996, pp. 2751-2767.
[14] M. T. Landahl, "A wave-guide model for turbulent shear flow," Journal of Fluid Mechanics, vol. 29, no. 3, pp. 441-459, 1967.
[15] A. D. D. Craik, "Wind-generated waves in thin liquid films," Journal of Fluid Mechanics, vol. 26, no. 2, pp. 369-392, 1966.
[16] J. W. Miles, "On the generation of surface waves by shear flows—part 4," J. Fluid Mech, no. 13, p. 433–448, 1962.
[17] G. R. Meindertsma, "Design and effectiveness of a novel tripping device for wind tunnel testing.," University OF Twente.( Tesis Doctoral ), 2020.
[18] H. Schlichting, Boundary Layer Theory, McGraw-Hill, Inc, 7th edition, 1979.
[19] M. S. Genç, I. Karasu and H. H. Açikel, "Un estudio experimental sobre la aerodinámica de Perfil aerodinámico NACA2415 a números Re bajos," ciencia experimental térmica y de fluidos, 2012.
[20] O. Dam, "Toma de Decisones en Ciencias e Ingenieria," in III Congreso Latinoamericano de Ciencias, Tecnologia e Innovacion, Quito, Ecuador, 2020.
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.


Download data is not yet available.