Abstract
This paper presents a theoretical analysis of the use of new technologies in teaching physics in engineering careers. Special emphasis is made using Maple software, since it is an easy-to-use and free-access tool, which allows students to learn quickly and efficiently, besides providing potential graphic resources. The literature is reviewed and the main results and proposals for academic development that can favor physics teaching in engineering and technical careers are presented. The results reveal that technology in education is a significant alternative to creating spaces for group interaction and learning, which includes computational skills as a valuable resource for the new professional.
References
[2] M. Mengoni, M. Germani, and M. Bordegoni, "Virtual reality systems: A method to evaluate the applicability based on the design context," in Proc. Int. Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Sept. 2007, doi: 10.1115/DETC2007-35461.
[3] Q. M. Clark and J. V. Clark, "Personalized learning tool for thermodynamics," in 2018 IEEE Frontiers in Education Conference (FIE), San Jose, CA, 2018, pp. 1-5, doi: 10.1109/FIE.2018.8658894.
[4] M. Hagge, M. Amin-Naseri, J. Jackman, E. Guo, S. Gilbert, G. Starns, and L. Faidley, "Intelligent Tutoring System Using Decision Based Learning for Thermodynamic Phase Diagrams," Advances in Engineering Education, vol. 6, no. 1, pp. 1-10, 2017.
[5] J. A. Jaramillo-Mujica, L. F. Morales-Avella, and D. M. Coy-Mondragón, "Una experiencia en el uso de metaversos para la enseñanza de la física mecánica en estudiantes de ingeniería," Revista Digital Educación en Ingeniería, vol. 12, no. 24, pp. 20-30, 2017.
[6] C. G. Bartoli and L. C. Díaz, "Proyecto: Sistemas inteligentes aplicados a la enseñanza de la programación en Ingeniería," in XIV Workshop de Investigadores en Ciencias de la Computación, 2012.
[7] K. Kaur, J. Kaur, and R. Singh, "Re-engineering education and training: Fostering digitalization for sustainability," in Digital Analytics Applications for Sustainable Training and Education, 2024, pp. 191-209.
[8] I. L. Khalid, M. N. S. Abdullah, and H. Fadzil, "A systematic review: Digital learning in STEM education," Journal of Advanced Research in Applied Sciences and Engineering Technology, vol. 51, no. 1, pp. 98-115, 2025, doi: 10.37934/araset.51.1.98115.
[9] M. Martínez, F. Segura, and J. M. Andújar, "The challenge of digital transition in engineering: A solution made from a European collaborative network of remote laboratories based on renewable energies technology," Applied System Innovation, vol. 6, no. 2, p. 52, 2023, doi: 10.3390/asi6020052.
[10] S. Akhtar, M. Nadeem, M. Rashdan, B. Hussain, E. A. Ansari, and M. H. Aslam, "Online Mode of Teaching and Learning Process in Engineering Discipline: Teacher Perspective on Challenges Faced and Recommendations," Education Sciences, vol. 13, no. 2, p. 200, 2023, doi: 10.3390/educsci13020200.
[11] R. Rayco and J. Yeudy, "Programa MAPLE y rendimiento académico en estudiantes de Ingeniería Civil, área de matemática, UNC 2019," Revista Digital UNC, 2022.
[12] C. Uscuvilca and M. Lorenzo, "Didáctica de la matemática y cognición de las ecuaciones diferenciales asistido por Maple 17 para estudiantes de ingeniería civil ciclo III 2018-2 de la Universidad Peruana los Andes Huancayo," Revista de Investigación Educativa, vol. 12, no. 3, pp. 41-50, 2021.
[13] J. Guerrero Castelló, Herramientas para el aprendizaje de las matemáticas en la ingeniería con MAPLE, Tesis de grado, Universidad Politécnica de Cataluña, 2009. [Online]. Available: http://hdl.handle.net/2099.1/7386.
[14] U. C. Durán Pico and L. A. R. Alava, "Asistencia de softwares matemáticos en el estudio de cálculo diferencial en estudiantes de ingeniería: Assistance of mathematical software in the study of differential calculation in engineering students," Revista Bases de la Ciencia, vol. 3, no. 2, pp. 61-76, 2018.
This work is licensed under a Creative Commons Attribution 4.0 International License.