Natural response of thermoelectric materials and devices
PDF
HTML

Keywords

figure of merit
thermoelectric angular frequencies
thermoelectric characterization
thermoelectric time constants

How to Cite

Pirela, R., & Velasquez, S. (2022). Natural response of thermoelectric materials and devices. Athenea Engineering Sciences Journal, 3(10), 49-62. https://doi.org/10.47460/athenea.v3i10.48

Abstract

The research aims to introduce the theory of the natural response of electrical circuits to the study of thermoelectricity and the characterization of thermoelectric devices and materials. New equations were found to calculate the thermal resistance of the contacts ???????????????????? and ????????????????, the thermal conductance ????????, and the figure of merit ????????. Furthermore, permits determining characteristic time constants ????????, ????????, ????????????, and relaxation times, as well as calculating the thermoelectric capacitances related to the device, material, and thermal contacts. Also, the characteristic angular frequencies are predicted ????????, ????????, and ????????????. The described theory satisfies Newton’s law of cooling, Luttinger’s thermal transport coefficients theory, and the first and second-order electric circuit’s behavior. Additionally, it makes available the prediction of the transport coefficients and the characterization in situ. Like Harman’s method, these parameters can be measured simultaneously on the same device or sample.

https://doi.org/10.47460/athenea.v3i10.48
PDF
HTML

References

[1] T. J. Seebeck, «Magnetic polarization of metals and minerals,» Abhandlungen der Deutschen Akademie der Wissenschaften Zu Berlin, vol. 265, 1822-1823.
[2] J. C. Peltier, «Nouvelles experiences sur la caloricite des courans electrique,» Annales de Chimie et de Physique, vol. LVI, pp. 371-386, 1834.
[3] S. Lineykin y S. Ben-Yaakov, «Modeling and analysis of thermoelectric modules,» IEEE Transactions on Industry Applications, vol. 43, nº 2, pp. 505-512, 2007.
[4] D. M. Rowe, CRC Handbook of Thermoelectrics, Boca Raton: Taylor & Francis, 1995, pp. 192-212.
[5] V. Zlatic y R. Monnie, Modern Theory of Thermoelectricity, New York: Oxford University Press, 2014.
[6] S. LeBlanc, S. K. Yee, M. L. Scullin, C. Dames y K. E. Goodson, «Material and manufacturing cost considerations for thermoelectrics,» Renewable and Sustainable Energy Reviews, vol. 32, pp. 313-327, 2014.
[7] A. F. Ioffe, Semiconductor Thermoelements and Thermoelectric Refrigeration, London: Infosearch, 1957.
[8] H. Wang, S. Bai, L. Chen, A. Cuenat, G. Joshi, H. Kleinke, J. König, H. W. Lee, J. Martin, M. W. Oh y W. D. Poter, «International round-robin study of the thermoelectric transport properties of an n-Type half-heusler compound from 300 K to 773 K,» Journal of Electronic Materials, vol. 44, nº 11, pp. 4482-4491, 2015.
[9] T. C. Harman, «Special techniques for measurement of thermoelectric properties,» Journal of Applied Physics, vol. 29, nº 9, pp. 1373-1374, 1958.
[10] H. Iwasaki, M. Koyano y H. Hori, «Evaluation of the figure of merit on thermoelectric materials by Harman method,» Japanese journal of applied physics, vol. 41, nº 11R, p. 6606, 2002.
[11] R. Venkatasubramanian, E. Siivola, T. Colpitts y B. O'quinn, «Thin-film thermoelectric devices with high room-temperature figures of merit.,» Nature, vol. 413, nº 6856, pp. 597- 602, 2001.
[12] J. Cape y G. W. Lehman, «Temperature and finite pulse‐time effects in the flash method for measuring thermal diffusivity,» Journal of applied physics, vol. 34, nº 7, pp. 1909-1913, 1963.
[13] G. Min y D. M. Rowe, «A novel principle allowing rapid and accurate measurement of a dimensionless thermoelectric figure of merit,» Measurement Science and Technology, vol. 12, nº 8, p. 1261, 2001.
[14] A. D. Downey, T. P. Hogan y B. Cook, «Characterization of thermoelectric elements and devices by impedance spectroscopy,» Review of Scientific Instruments, vol. 78, nº 9, p. 093904, 2007.
[15] A. De Marchi y V. Giaretto, «An accurate new method to measure the dimensionless figure of merit of thermoelectric devices based on the complex impedance porcupine diagram,» Review of Scientific Instruments, vol. 82, nº 10, p. 104904, 2011.
[16] J. García-Cañadas y G. Min, «Impedance spectroscopy models for the complete characterization of thermoelectric materials,» Journal of Applied Physics, vol. 116, nº 17, p. 174510, 2014.
[17] Y. Apertet y H. Ouerdane, «Small-signal model for frequency analysis of thermoelectric systems,» Energy Conversion and Management, vol. 149, pp. 564-569, 2017.
[18] J. M. Luttinger, «Theory of thermal transport coefficients,» Physical Review, vol. 135, nº 6A, p. A1505, 1964.
[19] R. E. Pirela y S. R. Velásquez, «Forced Response of Thermoelectric Materials and Devices,» IEEE Latin America Transactions, vol. 20, nº 8, 2022.
[20] UNESCO, «UNESCO moving forward the 2030 Agenda for Sustainable Development,» United Nations Educational, Scientific and Cultural Organization, Paris, France, 2017.
[21] C. K. Alexander y M. N. Sadiku, Fundamentals of electric circuits, vol. 4, New York: McGraw-Hill, 2009.
[22] Anonymous, «Scala graduum Caloris. Calorum Descriptiones & signa,» Philosophical Transactions, vol. 270, nº 22, p. 824–829, 1701.
[23] Kryotherm Co., «Thermoelectric coolers for industrial applications - Standard single stage thermoelectric coolers: TB-127-1.4-1.2.,» Kryotherm Co., products, online. Available: http://www.kryotherm.ru, p. 1, 2021.
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Downloads

Download data is not yet available.