Abstract
The objective of this paper is a theoretical calculation of the mechanical stresses due to nitrogen pressure in an iron vacancy in the temperature range of 600 to 1100 °C and its effect on the swelling phenomenon associated with the high-temperature viscous flow. The method for quantification is theoretical and based on the analysis of experimental data reported in the literature. Two equations related to the variable were generated: swelling index with time and the stress due to nitrogen pressure. Both the variables are described in increasing ways and correlated significantly at the 99% confidence level. The equations include the value of stresses obtained from previous papers for ferrite (Feα) of 621, 2 Kgf/mm2 and for austenite (Feγ) of 727, 6 Kgf/mm2. The overall effect when opposing these values to the average sample cold compression strength of commercial samples, which varies with the corresponding degree of reduction, the final value of this parameter results in the range of 35.2 and 69.6 Kgf/mm2.
References
[2] T. Fujii, M. Hayashi, S. Oku, T. Watanabe, and K. Nagata. “Formation and growth of iron nuclei on wüstite surface at the initial stage of reduction.” ISIJ International, vol. 54, no. 8, pp. 1765-1771, 2014.
[3] J. R. Gavarri and C. A. Carel, “Review about wüstite Fe1-zO, pseudo-phases, and defect clustering”. Working document, February 2018, pp. 1-46. Institut Matériaux Microélectronique et Nano sciences de Provence, Université de Toulon, France.
[4] G. Dieter, “Metalurgia Mecánica”, España: Aguilar, 1961
[5] G. Dieter, “Mechanical Metallurgy,” Singapore: McGraw Hill International, 1988.
[6] J. F. Shackelford, “Ciencia de los materiales para ingenieros,” (3° ed.) México: Prentice Hall Hispanoamericana. S. A., 1995.
[7] A. Al Omar, “Caracterización dinámica de dos aceros micro aleados de medio carbono mediante ensayos de compresión a alta temperatura aplicación de mapas de procesado”, tesis doctoral. Ciencia de Materiales e Ingeniería e Metalúrgica. E. T. S. Barcelona, España: Universidad Politécnica de Catalunya. 1996.
[8] A. Echegaray, O. Dam G. Thermo viscosity mechanism approach in the formation of fayalite-type ceramic accumulations in particle separators in cfd reactors. In print Athenea.
[9] E. N da C. Andrade. “On the viscous flow in metals and allied phenomena.” Proc. R. Soc. Lond. A, vol. 84, pp. 1-12, 1910.
[10] E. N da C. Andrade. “The flow in metals under large constant stresses.” Proc. R. Soc. Lond. A, vol. 90, pp. 329-342, 1914.
[11] J. E. Dorn, “Creep and recovery,” American Society for Metals. Metals Park. Ohio. 1957.
[12] T. I. Kang, “Study of reduction kinetics and properties of iron oxides for Corex process,” Master of Science, Faculty of Science and Technology, University of New South Wales, Sydney. 2000.
[13] H. M. W. Delport, “The development of a DRI process for small-scale EAF-based steel mills,” University of Stellenbosch, South Africa. 2010.
[14] A. Kasai and Y. Matsui, “Lowering thermal reserve zone temperature in Blast Furnace by adjoining carbonaceous material and iron ore,” ISIJ International, vol. 44 no. 12, pp. 2073–2078, 2004.
[15] ISO 4698, “Iron ore pellets for blast furnace feedstocks-Determination of a free swelling index,” Ginebra, ISO International Standard. 2007.
[16] Z. Huang, L. Yi, T. Jiang. Mechanisms of strength decrease in the initial reduction of iron ore oxide pellets. Powder Technology. Volume 221, May 2012, Pages 284-291.
[17] S.M. Iveson et al. Dynamic strength of liquid-bound granular materials: the effect of particle size and shape. Powder Technology, 2005.
[18] S.M. Iveson et al.The dynamic strength of partially saturated powder compacts: the effect of liquid properties. PowderTechnology. 2002.
[19] M. Miller and J. C. Miller, “Estadística y Quimiometría para Química Analítica”, 4° ed. España: Prentice Hall, 2002.
This work is licensed under a Creative Commons Attribution 4.0 International License.