Novel methodology for characterization of thermoelectric modules and materials
PDF
HTML

Keywords

thermoelectric characterization
Harman method
transient test method
thermoelectric time constants
thermoelectric frequencies
complete response
figure of merit

How to Cite

Pirela, R., & Velasquez, S. (2024). Novel methodology for characterization of thermoelectric modules and materials. Athenea Engineering Sciences Journal, 5(15), 29-40. https://doi.org/10.47460/athenea.v5i15.72

Abstract

The document presents an innovative methodology that combines forced response and natural response theories in thermoelectric materials and devices. It stands out for expressing the thermoelectric figure of merit in terms of the ratio of two temperatures ZT=∆T′/∆T, enabling comprehensive testing and precise characterization of thermoelectric modules and materials, including measurements of thermal conductance, electrical resistance, Seebeck coefficient, and figure of merit. Additionally, it addresses the determination of thermal resistances and thermal capacitances related to thermal contacts, as well as the derivation of characteristic time constants and angular frequencies. This approach, applicable to both modular devices and individual samples, allows for the simultaneous measurement of all parameters on a single sample. The experiments considered non-ideal contacts and non-adiabatic conditions at room temperature T= 300K, enhancing the feasibility of in-situ characterization and positioning this methodology as a key tool in thermoelectric research.

https://doi.org/10.47460/athenea.v5i15.72
PDF
HTML

References

[1] T. J. Seebeck, «Magnetic polarization of metals and minerals,» Abhandlungender Deutschen Akademie der Wissenschaften zu Berlin, vol. 265, 1822-1823.
[2] J. C. Peltier, «Nouvelles experiences sur la caloricite des courans electrique,» Annales de Chimie et de Physique, vol. LVI, p. 371–386, 1834.
[3] S. Lineykin e S. Ben-Yaakov, «Analysis of thermoelectric coolers by a spice-compatible equivalent circuit model,» IEEE Power Electronics Letters, vol. 3, n. 2, pp. 63-66, 2005.
[4] S. Lineykin e S. Ben-Yaakov, «Modeling and analysis of thermoelectric modules,» IEEE Transactions on Industry Applications, vol. 43, n. 2, pp. 505-512, 2007.
[5] D. M. Rowe, CRC Handbook of Thermoelectrics, Boca Raton: Taylor & Francis, 1995, pp. 192-212.
[6] Z. Ren, Y. Lan e Q. Zhang, Advanced Thermoelectrics Materials, Contacts, Devices, and Systems, Boca Raton: Taylor & Francis Group, LLC, 2018.
[7] N. M. Ravindra, B. Jariwala, A. Bañobre e A. Maske, Thermoelectrics Fundamentals, Materials Selection, Properties, and Performance, Cham: Springer Nature, 2019.
[8] S. LeBlanc, S. K. Yee, M. L. Scullin, C. Dames e K. E. Goodson, «Material and manufacturing cost considerations for thermoelectrics,» Renewable and Sustainable Energy Reviews, vol. 32, pp. 313-327, 2014.
[9] S. K. Yee, S. LeBlanc, K. E. Goodson e C. Dames, «$ per W metrics for thermoelectric power generation: beyond ZT,» Energy & Environmental Science, vol. 6, n. 9, pp. 2561-2571, 2013.
[10] H. Wang, S. Bai, L. Chen, A. Cuenat, G. Joshi, H. Kleinke, J. König, H. W. Lee, J. Martin, M. W. Oh e W. D. Poter, «International round-robin study of the thermoelectric transport properties of an n-Type halfheusler compound from 300 K to 773 K,» Journal of Electronic Materials, vol. 44, n. 11, pp. 4482-4491,
2015.
[11] Y. Apertet e H. Ouerdane, «Small-signal model for frequency analysis of thermoelectric systems,» Energy Conversion and Management, vol. 149, pp. 564-569, 2017.
[12] A. F. Ioffe, Physics of Semiconductors, London: Infosearch, 1960.
[13] T. M. Tritt, «Measurement and Characterization Techniques for Thermoelectric Materials,» MRS Online Proceedings Library (OPL), vol. 478, 1997.
[14] Z. Zhou e C. Uher, «Apparatus for Seebeck coefficient and electrical resistivity measurements of bulk thermoelectric materials at high temperature,» Review of scientific instruments, vol. 76, n. 2, p. 023901, 2005.
[15] T. C. Harman, «Special Techniques for Measurement of Thermoelectric Properties,» Journal of Applied Physics, vol. 29, n. 9, pp. 1373-1374, 1958.
[16] T. C. Harman, J. H. Cahn e M. J. Logan, «Measurement of thermal conductivity by utilization of the Peltier effect,» Journal of Applied Physics, vol. 30, n. 9, pp. 1351-1359, 1959.
[17] H. Iwasaki, M. Koyano e H. Hori, «Evaluation of the figure of merit on thermoelectric materials by Harman method,» Japanese Journal of Applied Physics, vol. 41, n. 11R, p. 6606, 2002.
[18] H. Iwasaki e H. Hori, 24th International Conference on Thermoelectrics, 2005. - Thermoelectric property measurements by the improved Harman method, Clemson, USA: IEEE ICT 2005, 2005, p. 513–516.
[19] R. J. Buist, «A new method for testing thermoelectric materials and devices,» in 11th International Conference on Thermoelectrics, Arlington, Texas, 1992.
[20] V. Zlatic e R. Monnie, Modern Theory of Thermoelectricity, New York: Oxford University Press, 2014.
[21] J. M. Luttinger, «Theory of thermal transport coefficients,» Physical Review, vol. 135, n. 6A, p. A1505, 1964.
[22] R. E. Pirela e S. R. Velásquez, «Forced Response of Thermoelectric Materials and Devices,» IEEE Latin America Transactions, vol. 20, n. 8, 2022.
[23] R. E. Pirela e S. R. Velásquez, «Natural Response of Thermoelectric Materials and Devices,» Athenea Engineering Sciences journal, vol. 3, n. 10, pp. 49-62, 2022.
[24] Kryotherm Co, «“Thermoelectric coolers for industrial applications: TB-127-1.4-1.2.,» in Available in: http://www.kryothermtec.com, Saint-Petersburg, Russia, 2023.
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Downloads

Download data is not yet available.