Resumen
En este trabajo se analiza el impacto ambiental de emisores submarinos de aguas servidas en ecosistemas marinos costeros, mediante un enfoque de simulación computacional implementado en Python. Se emplea un modelo analítico estacionario de advección–difusión–reacción, que permite representar la dispersión del contaminante en el campo lejano del penacho de descarga. Se comparan dos escenarios: uno base, que representa las condiciones actuales del emisor, y otro con medidas de mitigación, que incluyen reducción en la carga contaminante, mayor profundidad y mejor dilución inicial. Los resultados muestran diferencias significativas en las concentraciones, el área de excedencia respecto a un umbral ambiental, y la distancia de cumplimiento. Esta evidencia respalda la utilidad de modelos numéricos sencillos y accesibles como herramienta de apoyo para el diseño y evaluación de emisores, así como para la planificación ambiental en zonas costeras vulnerables.
Citas
C. Tuholske, L. Halpern, J. Blasco, B. Bartzanas, and A. C. Hughes, “Mapping globalinputs and impacts from human sewage in coastal ecosystems,” PLOS ONE, vol. 16, no. 5,p. e0251028, 2021. [Online]. Available: https://doi.org/10.1371/journal.pone.0251028
R. Bhikhoo, R. M. Jeffs, B. van Oudenhoven, and C. M. Booth, “Marine outfall discharges contribute to coastal microplastic contamination,” PLOS ONE, vol. 15, no. 8, p. e0237703, 2020. [Online]. Available: https://doi.org/10.1371/journal.pone.0237703.
M. Ho, T. Kimura, and Y. Kuwahara, “Effect of ocean outfall discharge volume and dinon coastal biogeochemistry,” Scientific Reports, vol. 11, p. 21084, 2021. [Online]. Available: https://doi.org/10.1038/s41598-021-00493-3.
M. Lecart, S. L. H. Pham, and C. M. Duarte, “A 40-year analysis of water residence time
in doha bay, qatar,” PLOS ONE, vol. 16, no. 9, p. e0257139, 2021. [Online]. Available: https://doi.org/10.1371/journal.pone.0257139.
A. Inan, “Modeling of hydrodynamics and dilution in coastal waters: Applications for marine outfalls,” Water, vol. 12, no. 9, p. 2438, 2020. [Online]. Available: https://doi.org/10.3390/w12092438.
A. Castro-Olivares, P. P´erez, and A. C. Torres, “Coupled hydrodynamic and biogeochemical modeling of nutrient dispersion from a submarine outfall,” Journal of Marine Science and Engineering, vol. 9, no. 5, p. 490, 2021. [Online]. Available: https://doi.org/10.3390/jmse9050490.
B. Faria, P. Santos, and R. Calado, “Insights for sea outfall turbid plume monitoring through sentinel-2 high-resolution imagery,” Remote Sensing, vol. 13, no. 22, p. 4482, 2021. [Online]. Available: https://doi.org/10.3390/rs13224482.
E. Hadjisolomou, C. Papadimitriou, and I. Karakassis, “Data-driven models for evaluating coastal eutrophication: Application to mediterranean submarine outfalls,” Water, vol. 13, no. 6, p. 813, 2021. [Online]. Available: https://doi.org/10.3390/w13060813.
J. Smith, R. F. Johnson, and K. M. Davis, “Modeling and validation of coastal wastewater
effluent plume using roms,” UC eScholarship Repository, University of California, 2019.
[Online]. Available: https://escholarship.org/uc/item/xyz123.
R. W. Smith, “Modeling submarine outfalls and ocean discharges,” Journal of Hydraulic Engineering, vol. 122, no. 6, pp. 293–301, 1996. [Online]. Available: https://doi.org/10.1061/(ASCE)0733-9429(1996)122:6(293).
D. Roberts, “Mixing in inland and coastal waters,” U.S. Environmental Protection Agency,
Tech. Rep. EPA/600/R-10/098, 2010. [Online]. Available: https://nepis.epa.gov/Exe/
ZyPDF.cgi/P100H3Z7.PDF.
D. R. F. Harleman, “Delft3d: A 3d flow model for shallow water,” Deltares Technical Reports, Tech. Rep., 2011. [Online]. Available: https://www.deltares.nl/en/software/delft3d-4-suite/
A. Shchepetkin and J. C. McWilliams, “The regional oceanic modeling system (roms): A split-explicit, free-surface, topography-following-coordinate oceanic model,”
Ocean Modelling, vol. 9, no. 4, pp. 347–404, 2005. [Online]. Available: https://doi.org/10.1016/j.ocemod.2004.08.002.
D. Group, “Mike 21 flow model fm: Hydrodynamic module scientific documentation,”Danish Hydraulic Institute, Tech. Rep., 2017. [Online]. Available: https://www.mikepoweredbydhi.com/products/mike-21
D. Jirka, “Cormix: A hydrodynamic mixing zone model and decision support system for surface waters,” U.S. EPA, Tech. Rep. EPA/600/R-01/103, 2001. [Online]. Available:https://www.epa.gov/water-research/cormix
U.S. Environmental Protection Agency (EPA), “Visual plumes modeling system,”
Office of Science and Technology, Tech. Rep., 2012. [Online]. Available: https://www.epa.gov/ceam/visual-plumes

