Resumen
Esta revisión sistemática analiza la evidencia científica publicada entre 2014 y 2024 sobre la impresión 3D de elastómeros con incorporación de materiales reciclados, con énfasis en poliuretano termoplástico (TPU) y tecnologías de extrusión de gránulos. Se siguieron las directrices PRISMA, consultando bases de datos Scopus}, Web of Science, ScienceDirect y SpringerLink. Se identificaron 142 estudios, de los cuales 37 cumplieron los criterios de inclusión. Los resultados muestran que el uso de cargas recicladas, como polvo de caucho, reduce moderadamente la resistencia mecánica, pero incrementa la dureza superficial y permite una significativa disminución del impacto ambiental. Asimismo, se evidencia una tendencia al empleo de optimización topológica y diseño generativo para maximizar el desempeño estructural. La síntesis de la literatura indica que la integración de elastómeros reciclados en manufactura aditiva es una alternativa sostenible con potencial en calzado, ortopedia y componentes de absorción de impactos, aunque persisten retos de compatibilización interfacial y escalabilidad industrial.
Citas
M. Sambucci, D. Marini, and M. Valente, “Tire Recycled Rubber for More Eco-Sustainable Advanced Cementitious Aggregate,” Recycling, vol. 5, no. 1, pp. 1–16, 2020. https://doi.org/10.3390/recycling5010011
M. F. Zulkefli, M. M. Ratnam, and H. S. Suresh, “Development of thermoplastic elastomer composite using recycled rubber and polypropylene with different additives,” Alexandria Engineering Journal, vol. 55, no. 1, pp. 583–587, 2016. https://doi.org/10.1016/j.aej.2015.10.017
R. H. Bossi, D. J. Linvill, and S. L. Marrs, “Recycling of Waste Rubber for 3D Printing Filaments,” Journal of Polymers and the Environment, vol. 28, pp. 1966–1975, 2020.
M. R. Amini and A. A. Yousefi, “Preparation and Characterization of Recycled Thermoplastic Elastomers for 3D Printing Applications,” Polymer Testing, vol. 85, pp. 106437, 2020.
S. M. Lee, C. Y. Kim, and T. H. Lim, “3D Printable Rubber-Like Composite Using Thermoplastic Polyurethane and Recycled Polyvinyl Butyral,” Composites Part B: Engineering, vol. 173, pp. 106979, 2019.
R. M. Teixeira, J. A. Machado, F. G. B. de Souza, and C. F. Lima, “Evaluation of Mechanical Properties of 3D Printed Elastomeric Composites Using Recycled Waste,” Applied Sciences, vol. 9, no. 8, p. 1713, 2019. https://doi.org/10.3390/app9081713.
R. Jiménez et al., “Valorization of Recycled Rubber in Additive Manufacturing: Mechanical and Rheological Evaluation,” Complexity, vol. 2019, pp. 1–12, 2019. https://doi.org/10.1155/2019/8138273
D. O. Aremu and F. B. Oni, “Elastomeric Filaments from Recycled Waste for Fused Filament Fabrication,” Journal of Materials Science Research, vol. 8, no. 3, pp. 45–53, 2019.
E. Rodríguez et al., “Evaluation of Eco-Flexible Materials Reinforced with Waste for 3D Printing,” Applied Sciences, vol. 11, no. 20, p. 8778, 2021. https://doi.org/10.3390/app11208778
M. Bernal, L. Rodríguez-Pérez, and A. Olivares, “TPU Filaments with Recycled Particles for Flexible 3D Structures,” Materials, vol. 14, no. 20, p. 5889, 2021. https://doi.org/10.3390/ma14205889.
A. L. Sigmund and J. P. Groen, “From Topology Optimization Design to Additive Manufacturing: A Review,” Archives of Computational Methods in Engineering, vol. 27, no. 3, pp. 713–735, 2020, doi: 10.1007/s11831-019-09331-1.
Q. Xia, J. Zhang, and T. Shi, “Topology Optimization for Additive Manufacturing with Strength Constraints,” Journal of Computational Design and Engineering, vol. 10, no. 2, pp. 892–905, 2023, doi: 10.1093/jcde/qwad017.
H. R. Vanaei, S. Shirinbayan, M. Fitoussi, A. Khelladi, and M. Tcharkhtchi, “Numerical-Experimental Investigation and Optimization of FFF Process via Response Surface Methodology,” Polymers, vol. 14, no. 19, p. 4100, 2022, doi: 10.3390/polym14194100.

