Structural equation models - PLS in engineering sciences: a brief guide for researchers through a case applied to the industry
Portada Tomo 4
PDF
HTML

Palabras clave

Competitiveness
Structural equations
Iron mining
Sustainability

Cómo citar

Villalva A., J. E. (2021). Structural equation models - PLS in engineering sciences: a brief guide for researchers through a case applied to the industry. Athenea, 2(4), 5-18. https://doi.org/10.47460/athenea.v2i4.17

Resumen

Modeling using structural equations is a second-generation statistical data analysis technique, it has been positioned as the methodological option most used by researchers in various fields of science. The best-known method is the covariance-based approach, but it presents some limitations for its application in certain cases. Another alternative method is based on the variance structure, through the analysis of partial least squares, which is an appropriate option when the research involves the use of latent variables (for example, composite indicators) prepared by the researcher, and where it is necessary to explain and predict complex models. This article presents a brief summary of the structural equation modeling technique, with an example on the relationship of constructs, sustainability, and competitiveness in iron mining, and is intended to be a brief guide for future researchers in the engineering sciences.

Keywords: Competitiveness, Structural equations, Iron mining, Sustainability.

https://doi.org/10.47460/athenea.v2i4.17
PDF
HTML

Citas

J. Hair, G. Hult, C. Ringle and M. Sarstedt. A Primer on Partial Least Square Structural Equation Modeling (PLS-SEM). California: United States. Sage, 2017.

H. Wold. Model Construction and Evaluation when Theoretical Knowledge Is Scarce: An Example of the Use of Partial Least Squares. Genève. Faculté des Sciences Économiques et Sociales, Université de Genève. 1979.

J. Henseler, G. Hubona & P. Ray. “Using PLS path modeling new technology research: updated guidelines”. Industrial Management & Data Systems, 116(1), 2-20. 2016.

G. Cepeda and Roldán J. “Aplicando en la Práctica la Técnica PLS en la Administración de Empresas”. Congreso de la ACEDE, Murcia, España, 2004.

D. Garson. Partial Least Squares. Regresión and Structural Equation Models. USA Statistical Associates Publishing: 2016.

D. Barclay, C. Higgins & R. Thompson. “The Partial Least Squares (PLS) Approach to Causal Modeling: Personal Computer Adoption and Use as an Illustration”. Technology Studies. Special Issue on Research Methodology. (2:2), pp. 285-309. 1995.

J. Medina, N. Pedraza & M. Guerrero. “Modelado de Ecuaciones Estructurales. Un Enfoque de Partial Least Square Aplicado en las Ciencias Sociales y Administrativas”. XIV Congreso Internacional de la Academia de Ciencias Administrativas A.C. (ACACIA). EGADE – ITESM. Monterrey, México, 2010.

J. Medina & J. Chaparro. “The Impact of the Human Element in the Information Systems Quality for Decision Making and User Satisfaction”. Journal of Computer Information Systems. (48:2), pp. 44-52. 2008.

D. Leidner, S. Carlsson, J. Elam & M. Corrales. “Mexican and Swedish Managers’ Perceptions of the Impact of EIS on Organizational Intelligence, Decisión Making, and Structure”. Decision Science. (30:3), pp. 633-658. 1999.

W. Chin. “The partial least squares approach for structural equation modeling”. Chapter Ten, pp. 295-336 in Modern methods for business research. Edited by Macoulides, G. A., New Jersey: Lawrence Erlbaum Associates, 1998.

M. Höck & C. Ringle M. “Strategic networks in the software industry: An empirical analysis of the value continuum”. IFSAM VIIIth World Congress, Berlin 2006.

J. Henseler, Ch. Ringle & M. Sarstedt. Handbook of partial least squares: Concepts, methods, and applications in marketing and related fields. Berlin: Springer, 2012.

S. Daskalakis & J. Mantas. “Evaluating the impact of a service-oriented framework for healthcare interoperability”. Studies in Health Technology and Informatics. pp. 285-290. 2008.

C. Fornell & D. Larcker: “Evaluating Structural Equation Models with Unobservable Variables and Measurement Error”, Journal of Marketing Research, vol. 18, pp. 39-50. February 1981.

C. Fornell. A Second Generation of Multivariate Analysis: An Overview. Vol. 1. New York, U.S.A. Praeger Publishers: 1982.

R. Falk and N. Miller. A Primer for Soft Modeling. Ohio: The University of Akron. 1992.

M. Martínez. Aplicación de la técnica PLS-SEM en la gestión del conocimiento: un enfoque técnico práctico.

Revista Iberoamericana para Investigación y el Desarrollo Educativo. Vol. 8, Núm. 16. 2018.

S. Geisser. “A predictive approach to the random effects model”. Biometrika, Vol. 61(1), pp. 101-107. 1974.

J. Cohen. Statistical power analysis for the behavioral sciences. Mahwah, NJ: Lawrence Erlbaum, 1988.

GRI (2013). G4 Sustainability Reporting Guidelines. Global Reporting Initiative. Available: www.globalreporting.org.

Creative Commons License
Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.

Descargas

La descarga de datos todavía no está disponible.