Resumen
En este trabajo se presenta el diseño de una mano robótica de 7 grados de libertad que permite mayor flexibilidad, logrando las acciones habituales realizadas por una mano normal. El trabajo consta de un prototipo diseñado con actuares lineales y sensor mioeléctrico, siguiendo el mecanismo de la Universidad de Toronto para el manejo de falanges funcionales. Se presenta el diseño, descripción constructiva, componentes y recomendaciones para la elaboración de una mano robótica flexible y útil para pacientes amputados con miembro residual para el encaje.
Palabras Clave: Mano robótica, grado de libertad, Mecanismo de Toronto, actuador lineal.
Citas
W. Diane, J. Braza, and M. Yacub, Essentials of Physical Medicine and Rehabilitation, 4th ed. Philadelphia: Walter R. Frontera and Julie K. Silver and Thomas D. Rizzo, 2020, pp. 651 - 657.
A. Heerschop, C. Van Der Sluis, E. Otten, and R.M. Bongers, Looking beyond proportional control: The relevance of mode switching in learning to operate multi-articulating myoelectric upper-limb prostheses. Biomedical Signal Processing and Control, 2020, doi:10.1016/j.bspc.2019.101647.
L. Heisnam, B. Suthar, 20 DOF robotic hand for teleoperation: — Design, simulation, control and accuracy test with leap motion. 2016 International Conference on Robotics and Automation for Humanitarian Applications (RAHA), 2016, doi:10.1109/raha.2016.7931886.
Y. Mishima, R. Ozawa, Design of a robotic finger using series gear chain mechanisms. 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2014, doi:10.1109/iros.2014.6942961.
N. Dechev, W. Cleghorn, S. Naumann, Multi-segmented finger design of an experimental prosthetic hand, Proceedings of the Sixth National Applied Mechanisms & Robotics Conference, December 1999.
O. Flor, “Building a mobile robot,” Education for the future. Accessed on: December 29, 2019. [Online] Available: https://omarflor2014.wixsite.com/misitio.
Vargas, O., Flor,O., Suarez, F., Design of a robotic prototype of the hand and right forearm for prostheses, Universidad, Ciencia y Tecnología, 2019.
O. Vargas, O. Flor, F. Suarez, C. Chimbo, Construction and functional tests of a robotic prototype for human prostheses, Revista Espirales, 2020.
P. PonPriya, E. Priya, Design, and control of prosthetic hand using myoelectric signal. International Conference on Computing and Communications Technologies (ICCCT), 2017, doi:10.1109/iccct2.2017.7972314.
N. Bajaj, A. Spiers, A. Dollar, State of the Art in Artificial Wrists: A Review of Prosthetic and Robotic Wrist Design. IEEE Transactions on Robotics, 2019, doi:10.1109/tro.2018.2865890.
R. Mahmoud, A. Ueno, and S. Tatsumi, “Dexterous mechanism design for an anthropomorphic artificial
hand: Osaka City University Hand I,” in Proc. 10th IEEE-RAS Int. Conf. Humanoid Robot. Humanoids, 2010,
pp. 180–185.
T. Inada, T. Tsujimori, S. Kitamura, and R. Taniuchi, “Robot,” U.S. Patent 7 622 001, 2009.
N. Torii, K. Mizuno, and H. Iwasaki, “Wrist assembly for an industrial robot,” U.S. Patent 4 972 735, 1990.
T. Hezel, I. Leiensetter, F. Herre, B. Maxh.
K. A. Wyrobek, E. H. Berger, H. F. M. Van Der Loos, and J. K. Salisbury, “Towards a personal robotics development platform: Rationale and design of an intrinsically safe personal robot,” in Proc. IEEE Int. Conf. Robot. Automat., 2008, pp. 2165–2170.
Myo Armband using a HM-10/HM-11, january 29th, 2020. Available online: https://blog.raquenaengineering.
com/arduino-and-the-myo-armband/
Myo Connect, SDK, and firmware downloads, January 29th, 2020. Available online: https://support.getmyo.
com/hc/en-us/articles/360018409792