Resumen
Este artículo caracteriza el estado del arte en las propiedades mecánicas del hueso y busca nuevas avenidas las cuales estén alineadas con caracterizaciones no invasivas para que así se puedan adaptarse mejor y producir tecnologías de vanguardia dentro del campo de implantes biomédicos y detección temprana de enfermedades en los huesos. Se concluye que la combinación de estos métodos y técnicas no invasivas contribuye significativamente a obtener las propiedades mecánicas de los huesos, lo cuales pudieran ser de gran utilidad para la detección temprana de enfermedades óseas, el desarrollo de modelos biológicos y la realización de análisis mecánicos con la intención de predecir comportamientos biológicos
anormales en los seres humanos.
Citas
[2] J. Foort, "Modular prosthetics-a philosophical view*," Prosthetics and Orthotics International, vol. 3, November 1978.
[3] S. Jonsson, K. Caine-Winterberger and R. Branemark, "Osseointegration amputation prostheses on the upper limbs: methods, prosthetics and rehabilitation," Prosthetics and Orthotics International, vol. 35, no. 2, pp. 1990-200, January 2011.
[4] A. B. Wilson, "Lower-limb modular prostheses: a status report," Orthotics and Prosthetics, vol. 29, no. 1, pp. 23-32, 1975.
[5] B. Resnick, "The Problem With Modern-Day, High-Tech Prosthetics," Popular Mechanics, March 2010. [Online]. Available: http://www.popularmechanics.com/science/health/a6302/high-tech-prosthetics-fitting/. [Accessed January 2016].
[6] A. Tathe, M. Ghodke and A. P. Nikalje, "A brief review: biomaterials and their application," International Journal of Pharmacy and Pharmaceutical Sciences, vol. 2, no. 4, pp. 19-23, 2011.
[7] J. R. Jameson, "Characterization of bone material properties and microstructure in osteogenesis imperfecta/brittle bone disease," Marquette University, Milwaukee, 2014.
[8] S. L. Lancianese, E. Kwok, C. A. Beck, and A. L. Lemer, "Predicting regional variations in trabecular bone mechanical properties within the human proximal tibia using MR imagining," Bone, vol. 43, no. 6, pp. 1039-1046, 2008.
[9] S. Bhalla and S. Bajaj, "Bone characterization using piezo transducers as biomedical sensors," Strain, vol. 44, no. 6, pp. 475-478, 2008.
[10] J. Chen, M. A. Birch and S. J. Bull, "Nanomechanical characterization of tissue-engineered bone grown on titanium alloy in vitro," Journal of Materials Science: Materials in Medicine, vol. 21, no. 1, pp. 277-282, 2009.
[11] F. G. Evans, "Mechanical properties of bone," Artificial Limbs, vol. 13, no. 1, pp. 37-48, 1973.
[12] A. D. P. Bankoff, "Biomechanical characteristics of the bone," in Human Musculoskeletal Biomechanics,
London, IntechOpen, 2012, pp. 61-86.
[13] M. Kutz, T. M. Keaveny, E. F. Morgan and O. C. Yeh, "Chapter 8," in Standard handbook of biomedical
engineering and design, New York, McGraw-Hill, 2003.
[14] A. Kemper, C. McNally, E. Kennedy, S. Manoogian, and S. Duma, "The material properties of human tibia cortical bone in tension and compression: implications for the tibia index," Virginia Tech – Wake Forest, Center for Injury Biomechanics, Blacksburg, 2007.
[15] K. G. Faulkner, C. C. Glüer, S. Majumdar, P. Lang, K. Engelke, and H. K. Genant, "Noninvasive measurements of bone mass, structure, and strength: current methods and experimental techniques," American Journal of Roentgenology, vol. 157, no. 6, pp. 1229-1237, 1991.
[16] K. Buckley, J. Kerns, P. D. D. Gikas, H. L. Birch, R. Keen, A. W. Parker, P. Matousek, and A. E. Goodship, "Measurement of abnormal bone composition in vivo using noninvasive Raman spectroscopy," IBMS Bonekey, vol. 11, no. 602, 2014.
[17] S. Parithimarkalaignan and T. V. Padmanabhan, "Osseointegration: an update," The Journal of Indian Prosthodontic Society, vol. 13, no. 1, pp. 2-6, November 2013.
[18] J. Rojek and J. J. Telega, "Contact problems with friction, adhesion and wear in orthopedic biomechanics," Journal of Theoretical and Applied Mechanics, vol. 3, no. 39, January 2001.
[19] P. J. Rao, M. H. Pelletier, W. R. Walsh, and R. J. Mobbs, "spine interbody implants: Material Selection and modification, functionalization, and bioactivation of surfaces to improve osseointegration," Orthopaedic
Surgery, vol. 6, no. 2, pp. 81-89, 2014.
[20] A. Bhattacharya, N. B. Watts, K. Davis, S. Kotowski, and R. Shukla, "Dynamic bone quality-a non-invasive measure of bone's biomechanical property," Journal of Clinical Densitometry, vol. 11, no. 3, pp. 449-450, 2008.
[21] A. K. Garg, "Bone Biology, Osseointegration, and Bone Grafting," in Implant Dentistry. A Practical Approach, Oxford, Mosby Elsevier, 2010, pp. 193-211.
[22] E. Donelly, "Methods for Assessing Bone Quality: A Review," Clinical Orthopaedics and Related Research, vol. 469, no. 8, pp. 2128-2138, 2010.
[23] G. R. Cointry, R. F. Capozza, A. L. Negri, E. J. A. Roldan, and J. L. Ferreti, "Biomechanical background for a noninvasive assessment of bone strength and muscle-bone interactions," J Musculoskel Neuron Interact, vol. 4, no. 1, pp. 1-11, 2003.
[24] H. Alva, K. Prasad, and A. Prasad, "Biomechanical considerations in osseointegrated support prosthesis," Live Dental, [Online]. Available: https://livedental.in/articles/implantology/146-biomechanical-considerations-inosseointegrated-supported-prosthesis.
[25] I. Tugcu, I. Safaz, B. Yilmaz, A. S. Goktepe, M. A. Taskaynatan, and K. Yazicioglu, "Muscle strength and bone mineral density in mine victims with transtibial amputation," Prosthetics and Orthotics International, vol. 33, no. 4, pp. 299-306, 2009.
[26] J. Burck and J. Bigelow, "Revolutionizing Prosthetics: Extreme Transdisciplinary Systems Engineering," Insight, vol. 13, no. 4, pp. 25-28, 2010.
[27] J. M. Patsch, A. J. Burghardt, G. Kazakia and S. Majumdar, "Noninvasive imaging of bone microarchitecture," Annals of the New York Academy of Sciences, vol. 1240, no. 1, pp. 77-87, 2011.
[28] N. A. Andrews, "Noninvasive evaluation of bone microarchitecture and strength: better than DXA?," IBMS Bonekey, vol. 9, 2012.
[29] "Glossary of Orthotic & Prosthetic Terms," West Coast Brace and Limb, [Online]. Available:
http://www.wcbl.com/op-resources-2/glossary-of-terms/.
[30] Radiological Society of North America, "Skeletal Scintigraphy (Bone Scan)," RadiologyInfo.org, 15 June 2020.
[Online]. Available: https://www.radiologyinfo.org/en/info/bone-scan. [Accessed 25 January 2022].
[31] B. J. Zadler, J. H. L. Le Rousseau, J. A. Scales and M. L. Smith, "Resonant Ultrasound Spectroscopy: theory and application," Geophysical Journal International, vol. 156, no. 1, pp. 154-169, 2004.
[32] J. R. Gladden, "Resonant Ultrasound Spectroscopy," Joseph R. Gladden, 2007. [Online]. Available: http://www.phy.olemiss.edu/~jgladden/rus/.
[33] N. J. MacIntyre and A. L. Lorbergs, "Imaging-Based Methods for Non-invasive Assessment of Bone Properties Influenced by Mechanical Loading," Physiotherapy Canada, vol. 64, no. 2, pp. 202-215, 2012.
[34] J. L. Tremoleda, M. Khalil, L. L. Gompels, M. Wylezinska-Arridge, T. Vincent and W. Gsell, "Imaging technologies for preclinical models of bone and joint disorders," EJNMMI Research, vol. 1, no. 11, pp. 1-14, 2011.
[35] V. Vijayakumar, "Quantifying the regional variations in the mechanical properties of cancellous bone of the tibia using indentation testing and CT imaging," McMaster University, Hamilton, 2013.